Anomaly detection with convolutional Graph Neural Networks

被引:0
|
作者
Oliver Atkinson
Akanksha Bhardwaj
Christoph Englert
Vishal S. Ngairangbam
Michael Spannowsky
机构
[1] University of Glasgow,School of Physics & Astronomy
[2] Theoretical Physics Division,Discipline of Physics
[3] Physical Research Laboratory,Institute for Particle Physics Phenomenology
[4] Indian Institute of Technology,Department of Physics
[5] Durham University,undefined
[6] Durham University,undefined
关键词
Jets;
D O I
暂无
中图分类号
学科分类号
摘要
We devise an autoencoder based strategy to facilitate anomaly detection for boosted jets, employing Graph Neural Networks (GNNs) to do so. To overcome known limitations of GNN autoencoders, we design a symmetric decoder capable of simultaneously reconstructing edge features and node features. Focusing on latent space based discriminators, we find that such setups provide a promising avenue to isolate new physics and competing SM signatures from sensitivity-limiting QCD jet contributions. We demonstrate the flexibility and broad applicability of this approach using examples of W bosons, top quarks, and exotic hadronically-decaying exotic scalar bosons.
引用
收藏
相关论文
共 50 条
  • [31] Device Performance Anomaly Detection Method Based on Graph Convolutional Neural Network
    Liu, Aolun
    Yang, Yang
    Guo, Yanpeng
    Gao, Zhipeng
    Rui, Lanlan
    PROCEEDINGS OF THE 13TH INTERNATIONAL CONFERENCE ON COMPUTER ENGINEERING AND NETWORKS, VOL II, CENET 2023, 2024, 1126 : 230 - 239
  • [32] One-class graph neural networks for anomaly detection in attributed networks
    Wang, Xuhong
    Jin, Baihong
    Du, Ying
    Cui, Ping
    Tan, Yingshui
    Yang, Yupu
    NEURAL COMPUTING & APPLICATIONS, 2021, 33 (18): : 12073 - 12085
  • [33] One-class graph neural networks for anomaly detection in attributed networks
    Xuhong Wang
    Baihong Jin
    Ying Du
    Ping Cui
    Yingshui Tan
    Yupu Yang
    Neural Computing and Applications, 2021, 33 : 12073 - 12085
  • [34] A Feature Compression Technique for Anomaly Detection Using Convolutional Neural Networks
    Liu, Shuyong
    Jiang, Hongrui
    Li, Sizhao
    Yang, Yang
    Shen, Linshan
    2020 IEEE 14TH INTERNATIONAL CONFERENCE ON ANTI-COUNTERFEITING, SECURITY, AND IDENTIFICATION (ASID), 2020, : 40 - 43
  • [35] Bone Anomaly Detection by Extracting Regions of Interest and Convolutional Neural Networks
    Meqdad, Maytham N.
    Rauf, Hafiz Tayyab
    Kadry, Seifedine
    APPLIED SYSTEM INNOVATION, 2023, 6 (01)
  • [36] Detection of anomaly in surveillance videos using quantum convolutional neural networks
    Amin, Javaria
    Anjum, Muhammad Almas
    Ibrar, Kainat
    Sharif, Muhammad
    Kadry, Seifedine
    Crespo, Ruben Gonzalez
    IMAGE AND VISION COMPUTING, 2023, 135
  • [37] An Empirical Study on Network Anomaly Detection using Convolutional Neural Networks
    Kwon, Donghwoon
    Natarajan, Kathiravan
    Suh, Sang C.
    Kim, Hyunjoo
    Kim, Jinoh
    2018 IEEE 38TH INTERNATIONAL CONFERENCE ON DISTRIBUTED COMPUTING SYSTEMS (ICDCS), 2018, : 1595 - 1598
  • [38] Radio Frequency Classification and Anomaly Detection using Convolutional Neural Networks
    Conn, Marvin A.
    Josyula, Darsana
    2019 IEEE RADAR CONFERENCE (RADARCONF), 2019,
  • [39] Fault Detection and Isolation in Industrial Networks using Graph Convolutional Neural Networks
    Khorasgani, Hamed
    Hasanzadeh, Arman
    Farahat, Ahmed
    Gupta, Chetan
    2019 IEEE INTERNATIONAL CONFERENCE ON PROGNOSTICS AND HEALTH MANAGEMENT (ICPHM), 2019,
  • [40] Link anomaly detection algorithm for wireless sensor networks based on convolutional neural networks
    Temur, Chao-Lu
    Zhang, Ya-Ping
    Jilin Daxue Xuebao (Gongxueban)/Journal of Jilin University (Engineering and Technology Edition), 2024, 54 (08): : 2295 - 2300