Numerical exploration of electromagnetic electron whistler-cyclotron instability in Vasyliunas-Cairns distributed non-thermal plasmas: A kinetic theory approach

被引:10
作者
Shahzad, M. A. [1 ,2 ]
Aman-ur-Rehma [3 ]
Sarfraz, M. [3 ]
Bilal, M. [1 ,2 ]
Mahmood, S. [4 ]
Hamza, M. Y. [1 ]
机构
[1] PIEAS, Dept Phys & Appl Math DPAM, PO Nilore, Islamabad 45650, Pakistan
[2] PIEAS, Ctr Math Sci CMS, PO Nilore, Islamabad 45650, Pakistan
[3] Govt Coll Univ GCU, Dept Phys, Lahore 54000, Pakistan
[4] Theoret Phys Div TPD, PINSTECH, PO Nilore, Islamabad 45650, Pakistan
关键词
QUASI-LINEAR THEORY; SOLAR-WIND; SPACE; WAVES; MAGNETOSPHERE; ANISOTROPY; DRIVEN; CORE;
D O I
10.1140/epjp/s13360-024-05159-2
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A natural compression/expansion in the extended plasma systems generates the temperature anisotropy in the particle distribution. Such a kinetic anisotropy acts as source of free energies to instigate the generation of a variety of instabilities. These microinstabilities in turn are extensively involved in the enhancement of electromagnetic fluctuations and scatter the particles to reach the quasistable states, with relatively lower anisotropies. One of them is the instability associated with right hand circularly polarized electromagnetic electron whistler-cyclotron mode which significantly contributes to checking/defining the perpendicular electron temperature in large scale extended space plasmas. Its transverse dielectric response function in hybrid non-thermal Vasyliunas-Cairns distributed plasmas (which simultaneously incorporates the characteristics of both type of non-thermalities, i.e., alpha\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document} and kappa\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\kappa $$\end{document}) is calculated by using the well-known dispersion relation presented by Gary, 1993 [1]. The obtained dielectric response function is solved numerically to procure the real and imaginary frequencies of whistler instability. The impact of important physical parameters, i.e., non-thermality parameters alpha\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document} and kappa\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \kappa $$\end{document} for different temperature anisotropy A and plasma beta beta\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta $$\end{document} is studied on the numerically calculated real frequency and growth rate of whistler instability. Both the real and imaginary frequencies are found sensitive to the respective instability thresholds. It is also investigated that the real frequency and growth rate are remarkably supported by the hybrid non-thermality of alpha\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document} and kappa\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\kappa $$\end{document}. Contemporary analysis is highly pertinent to comprehend the various magnetized space plasma environments where mixed non-thermal distributions are in frequently existent.
引用
收藏
页数:15
相关论文
共 65 条
[21]  
Gurnett DA., 2005, INTRO PLASMA PHYS SP, DOI DOI 10.1017/CBO9780511809125
[22]   Solar wind proton temperature anisotropy:: Linear theory and WIND/SWE observations [J].
Hellinger, P ;
Trávnícek, P ;
Kasper, JC ;
Lazarus, AJ .
GEOPHYSICAL RESEARCH LETTERS, 2006, 33 (09)
[23]   THE NOSE WHISTLER - A NEW HIGH-LATITUDE PHENOMENON [J].
HELLIWELL, RA ;
CRARY, JH ;
POPE, JH ;
SMITH, RL .
JOURNAL OF GEOPHYSICAL RESEARCH, 1956, 61 (01) :139-142
[24]   Large amplitude whistlers in the magnetosphere observed with Wind-Waves [J].
Kellogg, P. J. ;
Cattell, C. A. ;
Goetz, K. ;
Monson, S. J. ;
Wilson, L. B., III .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2011, 116
[25]   LIMIT ON STABLY TRAPPED PARTICLE FLUXES [J].
KENNEL, CF ;
PETSCHEK, HE .
JOURNAL OF GEOPHYSICAL RESEARCH, 1966, 71 (01) :1-+
[26]   Whistler instability stimulated by the suprathermal electrons present in space plasmas [J].
Lazar, M. ;
Lopez, R. A. ;
Shaaban, S. M. ;
Poedts, S. ;
Fichtner, H. .
ASTROPHYSICS AND SPACE SCIENCE, 2019, 364 (10)
[27]   Destabilizing effects of the suprathermal populations in the solar wind [J].
Lazar, M. ;
Poedts, S. ;
Fichtner, H. .
ASTRONOMY & ASTROPHYSICS, 2015, 582
[28]   Towards realistic parametrization of the kinetic anisotropy and the resulting instabilities in space plasmas. Electromagnetic electron-cyclotron instability in the solar wind [J].
Lazar, M. ;
Poedts, S. ;
Schlickeiser, R. ;
Dumitrache, C. .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2015, 446 (03) :3022-3033
[29]   The interplay of Kappa and core populations in the solar wind: Electromagnetic electron cyclotron instability [J].
Lazar, M. ;
Poedts, S. ;
Schlickeiser, R. .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2014, 119 (12) :9395-9406
[30]   Electromagnetic electron whistler-cyclotron instability in bi-Kappa distributed plasmas [J].
Lazar, M. ;
Poedts, S. ;
Michno, M. J. .
ASTRONOMY & ASTROPHYSICS, 2013, 554