Numerical exploration of electromagnetic electron whistler-cyclotron instability in Vasyliunas-Cairns distributed non-thermal plasmas: A kinetic theory approach

被引:10
作者
Shahzad, M. A. [1 ,2 ]
Aman-ur-Rehma [3 ]
Sarfraz, M. [3 ]
Bilal, M. [1 ,2 ]
Mahmood, S. [4 ]
Hamza, M. Y. [1 ]
机构
[1] PIEAS, Dept Phys & Appl Math DPAM, PO Nilore, Islamabad 45650, Pakistan
[2] PIEAS, Ctr Math Sci CMS, PO Nilore, Islamabad 45650, Pakistan
[3] Govt Coll Univ GCU, Dept Phys, Lahore 54000, Pakistan
[4] Theoret Phys Div TPD, PINSTECH, PO Nilore, Islamabad 45650, Pakistan
关键词
QUASI-LINEAR THEORY; SOLAR-WIND; SPACE; WAVES; MAGNETOSPHERE; ANISOTROPY; DRIVEN; CORE;
D O I
10.1140/epjp/s13360-024-05159-2
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A natural compression/expansion in the extended plasma systems generates the temperature anisotropy in the particle distribution. Such a kinetic anisotropy acts as source of free energies to instigate the generation of a variety of instabilities. These microinstabilities in turn are extensively involved in the enhancement of electromagnetic fluctuations and scatter the particles to reach the quasistable states, with relatively lower anisotropies. One of them is the instability associated with right hand circularly polarized electromagnetic electron whistler-cyclotron mode which significantly contributes to checking/defining the perpendicular electron temperature in large scale extended space plasmas. Its transverse dielectric response function in hybrid non-thermal Vasyliunas-Cairns distributed plasmas (which simultaneously incorporates the characteristics of both type of non-thermalities, i.e., alpha\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document} and kappa\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\kappa $$\end{document}) is calculated by using the well-known dispersion relation presented by Gary, 1993 [1]. The obtained dielectric response function is solved numerically to procure the real and imaginary frequencies of whistler instability. The impact of important physical parameters, i.e., non-thermality parameters alpha\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document} and kappa\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \kappa $$\end{document} for different temperature anisotropy A and plasma beta beta\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta $$\end{document} is studied on the numerically calculated real frequency and growth rate of whistler instability. Both the real and imaginary frequencies are found sensitive to the respective instability thresholds. It is also investigated that the real frequency and growth rate are remarkably supported by the hybrid non-thermality of alpha\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document} and kappa\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\kappa $$\end{document}. Contemporary analysis is highly pertinent to comprehend the various magnetized space plasma environments where mixed non-thermal distributions are in frequently existent.
引用
收藏
页数:15
相关论文
共 65 条
[1]   Dust charging processes with a Cairns-Tsallis distribution function with negative ions [J].
Abid, A. A. ;
Khan, M. Z. ;
Yap, S. L. ;
Tercas, H. ;
Mahmood, S. .
PHYSICS OF PLASMAS, 2016, 23 (01)
[2]   Revisiting some analytical and numerical interpretations of Cairns and Kappa-Cairns distribution functions [J].
Aman-ur-Rehman ;
Ahmad, Mushtaq ;
Shahzad, Muhammad Ahsan .
PHYSICS OF PLASMAS, 2020, 27 (10)
[3]   Electrostatic solitary structures in dusty plasmas with nonthermal and superthermal electrons [J].
Aoutou, Kamel ;
Tribeche, Mouloud ;
Zerguini, Taha Houssine .
PHYSICS OF PLASMAS, 2008, 15 (01)
[4]   Ion acoustic solitary waves in an electron-positron-ion plasma with non-thermal electrons [J].
Baluku, T. K. ;
Hellberg, M. A. .
PLASMA PHYSICS AND CONTROLLED FUSION, 2011, 53 (09)
[5]   Kinetic theory of dust ion-acoustic waves in the presence of hybrid Cairns-Tsallis distributed electrons [J].
Bilal, Muhammad ;
Rehman, Aman Ur ;
Mahmood, Shahzad ;
Shahzad, Muhammad Ahsan ;
Sarfraz, Muhammad ;
Ahmad, Mushtaq .
PHYSICA SCRIPTA, 2022, 97 (12)
[6]   Landau damping of ion-acoustic waves with simultaneous effects of non-extensivity and non-thermality in the presence of hybrid Cairns-Tsallis distributed electrons [J].
Bilal, Muhammad ;
Rehman, Aman-ur ;
Mahmood, Shahzad ;
Shahzad, Muhammad Ahsan ;
Sarfraz, Muhammad .
CONTRIBUTIONS TO PLASMA PHYSICS, 2023, 63 (01)
[7]   Effect of non-thermal and non-extensive parameters on electron plasma waves in hybrid Cairns-Tsallis distributed plasmas [J].
Bilal, Muhammad ;
Ur-Rehman, Aman ;
Mahmood, Shahzad ;
Shahzad, Muhammad Ahsan .
EUROPEAN PHYSICAL JOURNAL PLUS, 2022, 137 (07)
[8]   OBSERVATIONS OF WEAK DOUBLE-LAYERS ON AURORAL FIELD LINES [J].
BOSTROM, R .
IEEE TRANSACTIONS ON PLASMA SCIENCE, 1992, 20 (06) :756-763
[9]   Ion sound solitary waves with density depressions [J].
Cairns, RA ;
Bingham, R ;
Dendy, RO ;
Nairn, CMC ;
Skukla, PK ;
Mamun, AA .
JOURNAL DE PHYSIQUE IV, 1995, 5 (C6) :43-48
[10]  
Chen F. F., 2006, Introduction to Plasma Physics and Controlled Fusion, V2nd, DOI 10.1007/978-3-319-22309-4