Regularity condition of solutions to the quasi-geostrophic equations in Besov spaces with negative indices

被引:0
作者
Bao-quan Yuan
机构
[1] Henan Polytechnic University,School of Mathematics and Information Science
来源
Acta Mathematicae Applicatae Sinica, English Series | 2010年 / 26卷
关键词
Quasi-geostrophic equations; regularity conditions; Besov spaces; 35Q35; 76D03;
D O I
暂无
中图分类号
学科分类号
摘要
With a Hölder type inequality in Besov spaces, we show that every strong solution on θ(t, x) on (0, T) of the dissipative quasi-geostrophic equations can be continued beyond T provided that ▿⊥θ(t,x) ∈ \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ L^{\frac{{2\gamma }} {{\gamma - 2\delta }}} $$\end{document} ((0, T); \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \dot B_{\infty ,\infty }^{{{ - \delta - \gamma } \mathord{\left/ {\vphantom {{ - \delta - \gamma } 2}} \right. \kern-\nulldelimiterspace} 2}} $$\end{document} (ℝ2)) for 0 < δ < \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \frac{\gamma } {2} $$\end{document}.
引用
收藏
页码:381 / 386
页数:5
相关论文
共 50 条
[41]   DISSIPATIVE QUASI-GEOSTROPHIC EQUATIONS IN CRITICAL SOBOLEV SPACES: SMOOTHING EFFECT AND GLOBAL WELL-POSEDNESS [J].
Dong, Hongjie .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2010, 26 (04) :1197-1211
[42]   Commutator estimate and its application to regularity criteria of the dissipative quasi-geostrophic equation [J].
Chen, Jianwen ;
Chen, Zhi-Min ;
Dong, Bo-Qing .
APPLIED MATHEMATICS AND COMPUTATION, 2018, 329 :84-91
[43]   EXISTENCE OF GLOBAL SOLUTIONS TO THE 2-D SUBCRITICAL DISSIPATIVE QUASI-GEOSTROPHIC EQUATION AND PERSISTENCY OF THE INITIAL REGULARITY [J].
Ramzi, May ;
Zahrouni, Ezzeddine .
ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2011,
[44]   SOLUTIONS OF QUASI-GEOSTROPHIC TURBULENCE IN MULTI-LAYERED CONFIGURATIONS [J].
Jamal, S. .
QUAESTIONES MATHEMATICAE, 2018, 41 (03) :409-421
[45]   Finite time singularities for a class of generalized surface quasi-geostrophic equations [J].
Dong, Hongjie ;
Li, Dong .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2008, 136 (07) :2555-2563
[46]   Besov regularity for solutions of p-harmonic equations [J].
Clop, Albert ;
Giova, Raffaella ;
di Napoli, Antonia Passarelli .
ADVANCES IN NONLINEAR ANALYSIS, 2019, 8 (01) :762-778
[47]   Besov regularity for solutions of elliptic equations with variable exponents [J].
Giova, Raffaella .
MATHEMATISCHE NACHRICHTEN, 2020, 293 (08) :1459-1480
[48]   Regularity of Weak Solutions to the 3D Magneto-Micropolar Equations in Besov Spaces [J].
Baoquan Yuan ;
Xiao Li .
Acta Applicandae Mathematicae, 2019, 163 :207-223
[49]   Regularity of Weak Solutions to the 3D Magneto-Micropolar Equations in Besov Spaces [J].
Yuan, Baoquan ;
Li, Xiao .
ACTA APPLICANDAE MATHEMATICAE, 2019, 163 (01) :207-223