Regularity condition of solutions to the quasi-geostrophic equations in Besov spaces with negative indices

被引:0
作者
Bao-quan Yuan
机构
[1] Henan Polytechnic University,School of Mathematics and Information Science
来源
Acta Mathematicae Applicatae Sinica, English Series | 2010年 / 26卷
关键词
Quasi-geostrophic equations; regularity conditions; Besov spaces; 35Q35; 76D03;
D O I
暂无
中图分类号
学科分类号
摘要
With a Hölder type inequality in Besov spaces, we show that every strong solution on θ(t, x) on (0, T) of the dissipative quasi-geostrophic equations can be continued beyond T provided that ▿⊥θ(t,x) ∈ \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ L^{\frac{{2\gamma }} {{\gamma - 2\delta }}} $$\end{document} ((0, T); \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \dot B_{\infty ,\infty }^{{{ - \delta - \gamma } \mathord{\left/ {\vphantom {{ - \delta - \gamma } 2}} \right. \kern-\nulldelimiterspace} 2}} $$\end{document} (ℝ2)) for 0 < δ < \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \frac{\gamma } {2} $$\end{document}.
引用
收藏
页码:381 / 386
页数:5
相关论文
共 50 条
  • [31] Equilibrium statistical mechanics of barotropic quasi-geostrophic equations
    Grotto, Francesco
    Pappalettera, Umberto
    [J]. INFINITE DIMENSIONAL ANALYSIS QUANTUM PROBABILITY AND RELATED TOPICS, 2021, 24 (01)
  • [32] ON THE QUALITATIVE THEORY OF THE ROTATING BOUSSINESQ AND QUASI-GEOSTROPHIC EQUATIONS
    Tladi, Maleafisha Joseph Pekwa Stephen
    [J]. QUAESTIONES MATHEMATICAE, 2017, 40 (06) : 705 - 737
  • [33] ON THE UNIQUENESS FOR SUB-CRITICAL QUASI-GEOSTROPHIC EQUATIONS
    Ferreira, Lucas C. F.
    [J]. COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2011, 9 (01) : 57 - 62
  • [34] REGULARITY OF GLOBAL ATTRACTORS AND EXPONENTIAL ATTRACTORS FOR 2D QUASI-GEOSTROPHIC EQUATIONS WITH FRACTIONAL DISSIPATION
    Yang, Lin
    Wang, Yejuan
    Caraballo, Tomas
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2022, 27 (03): : 1345 - 1377
  • [35] Blow-up criterion of strong solutions to the Navier-Stokes equations in Besov spaces with negative indices
    Yuan, Baoquan
    Zhang, Bo
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2007, 242 (01) : 1 - 10
  • [36] The 2D quasi-geostrophic equations in the Sobolev space
    Ju, Ning
    [J]. HARMONIC ANALYSIS, PARTIAL DIFFERENTIAL EQUATIONS, AND RELATED TOPICS, 2007, 428 : 75 - 92
  • [37] Quasi-geostrophic equations, nonlinear Bernstein inequalities and α-stable processes
    Chamorro, Diego
    Lemarie-Rieusset, Pierre Gilles
    [J]. REVISTA MATEMATICA IBEROAMERICANA, 2012, 28 (04) : 1109 - 1122
  • [38] ROBUSTNESS OF INSTABILITY OF TWO-LAYER QUASI-GEOSTROPHIC EQUATIONS
    Wang, Rongfang
    [J]. DIFFERENTIAL EQUATIONS & APPLICATIONS, 2014, 6 (02): : 287 - 294
  • [39] Reduced Order Models for the Quasi-Geostrophic Equations: A Brief Survey
    Mou, Changhong
    Wang, Zhu
    Wells, David R.
    Xie, Xuping
    Iliescu, Traian
    [J]. FLUIDS, 2021, 6 (01)
  • [40] Global well-posedness for the 2D dissipative quasi-geostrophic equations in modulation spaces
    Zhao, Weiren
    Chen, Jiecheng
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2017, 40 (12) : 4246 - 4258