Regularity condition of solutions to the quasi-geostrophic equations in Besov spaces with negative indices

被引:0
作者
Bao-quan Yuan
机构
[1] Henan Polytechnic University,School of Mathematics and Information Science
来源
Acta Mathematicae Applicatae Sinica, English Series | 2010年 / 26卷
关键词
Quasi-geostrophic equations; regularity conditions; Besov spaces; 35Q35; 76D03;
D O I
暂无
中图分类号
学科分类号
摘要
With a Hölder type inequality in Besov spaces, we show that every strong solution on θ(t, x) on (0, T) of the dissipative quasi-geostrophic equations can be continued beyond T provided that ▿⊥θ(t,x) ∈ \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ L^{\frac{{2\gamma }} {{\gamma - 2\delta }}} $$\end{document} ((0, T); \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \dot B_{\infty ,\infty }^{{{ - \delta - \gamma } \mathord{\left/ {\vphantom {{ - \delta - \gamma } 2}} \right. \kern-\nulldelimiterspace} 2}} $$\end{document} (ℝ2)) for 0 < δ < \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \frac{\gamma } {2} $$\end{document}.
引用
收藏
页码:381 / 386
页数:5
相关论文
共 50 条
[21]   On the regularity of weak solutions for a modified dissipative quasi-geostrophic equation [J].
Qian Zhang .
Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2017, 111 :89-100
[22]   Global existence of solutions for subcritical quasi-geostrophic equations [J].
Ramzi, May ;
Ezzeddine, Zahrouni .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2008, 7 (05) :1179-1191
[23]   On the 2D critical and supercritical dissipative quasi-geostrophic equation in Besov spaces [J].
Dong, Hongjie ;
Li, Dong .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2010, 248 (11) :2684-2702
[24]   Gevrey regularity for the supercritical quasi-geostrophic equation [J].
Biswas, Animikh .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2014, 257 (06) :1753-1772
[25]   Uniqueness criterion of weak solutions for the dissipative quasi-geostrophic equations in Orlicz-Morrey spaces [J].
Gala, Sadek ;
Ragusa, Maria Alessandra ;
Sawano, Yoshihiro ;
Tanaka, Hitoshi .
APPLICABLE ANALYSIS, 2014, 93 (02) :356-368
[26]   A regularity criterion for three-dimensional micropolar fluid equations in Besov spaces of negative regular indices [J].
Maria Alessandra Ragusa ;
Fan Wu .
Analysis and Mathematical Physics, 2020, 10
[27]   A regularity criterion for three-dimensional micropolar fluid equations in Besov spaces of negative regular indices [J].
Ragusa, Maria Alessandra ;
Wu, Fan .
ANALYSIS AND MATHEMATICAL PHYSICS, 2020, 10 (03)
[28]   Regularity criteria for the 3D magneto-micropolar fluid equations in Besov spaces with negative indices [J].
Guo, Congchong ;
Zhang, Zujin ;
Wang, Jialin .
APPLIED MATHEMATICS AND COMPUTATION, 2012, 218 (21) :10755-10758
[29]   A logarithmically improved regularity criterion for the surface quasi-geostrophic equation [J].
Wen, Zhihong ;
Ye, Zhuan .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2018, 75 (04) :1368-1377
[30]   Global Regularity for a Modified Critical Dissipative Quasi-geostrophic Equation [J].
Constantin, Peter ;
Iyer, Gautam ;
Wu, Jiahong .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2008, 57 (06) :2681-2692