Regularity condition of solutions to the quasi-geostrophic equations in Besov spaces with negative indices

被引:0
作者
Bao-quan Yuan
机构
[1] Henan Polytechnic University,School of Mathematics and Information Science
来源
Acta Mathematicae Applicatae Sinica, English Series | 2010年 / 26卷
关键词
Quasi-geostrophic equations; regularity conditions; Besov spaces; 35Q35; 76D03;
D O I
暂无
中图分类号
学科分类号
摘要
With a Hölder type inequality in Besov spaces, we show that every strong solution on θ(t, x) on (0, T) of the dissipative quasi-geostrophic equations can be continued beyond T provided that ▿⊥θ(t,x) ∈ \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ L^{\frac{{2\gamma }} {{\gamma - 2\delta }}} $$\end{document} ((0, T); \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \dot B_{\infty ,\infty }^{{{ - \delta - \gamma } \mathord{\left/ {\vphantom {{ - \delta - \gamma } 2}} \right. \kern-\nulldelimiterspace} 2}} $$\end{document} (ℝ2)) for 0 < δ < \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \frac{\gamma } {2} $$\end{document}.
引用
收藏
页码:381 / 386
页数:5
相关论文
共 50 条
[11]   Local well-posedness for the quasi-geostrophic equations in Besov-Lorentz spaces [J].
Zhang, Qian ;
Zhang, Yehua .
RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2020, 69 (01) :53-70
[12]   LARGE-TIME REGULAR SOLUTIONS TO THE MODIFIED QUASI-GEOSTROPHIC EQUATION IN BESOV SPACES [J].
Tan, Wen ;
Dong, Bo-Qing ;
Chen, Zhi-Min .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2019, 39 (07) :3749-3765
[13]   GLOBAL SOLUTIONS OF THE 2D DISSIPATIVE QUASI-GEOSTROPHIC EQUATION IN BESOV SPACES [J].
Wu, Jiahong .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2005, 36 (03) :1014-1030
[14]   REGULARITY CRITERIA FOR THE GENERALIZED MAGNETOHYDRODYNAMIC EQUATIONS AND THE QUASI-GEOSTROPHIC EQUATIONS [J].
Fan, Jishan ;
Gao, Hongjun ;
Nakamura, Gen .
TAIWANESE JOURNAL OF MATHEMATICS, 2011, 15 (03) :1059-1073
[15]   A remark on regularity criterion for the dissipative quasi-geostrophic equations [J].
Dong, Bo-Qing ;
Chen, Zhi-Min .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 329 (02) :1212-1217
[16]   GLOBAL REGULARITY FOR MODIFIED CRITICAL DISSIPATIVE QUASI-GEOSTROPHIC EQUATIONS [J].
杨婉蓉 ;
酒全森 .
ActaMathematicaScientia, 2014, 34 (06) :1741-1748
[17]   A regularity criterion for the critical and supercritical dissipative quasi-geostrophic equations [J].
Xiang, Zhaoyin .
APPLIED MATHEMATICS LETTERS, 2010, 23 (10) :1286-1290
[18]   GLOBAL REGULARITY FOR MODIFIED CRITICAL DISSIPATIVE QUASI-GEOSTROPHIC EQUATIONS [J].
Yang, Wanrong ;
Jiu, Quansen .
ACTA MATHEMATICA SCIENTIA, 2014, 34 (06) :1741-1748
[19]   LOGARITHMICALLY IMPROVED REGULARITY CRITERIA FOR SUPERCRITICAL QUASI-GEOSTROPHIC EQUATIONS IN ORLICZ-MORREY SPACES [J].
Gala, Sadek ;
Ragusa, Maria Alessandra .
ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2016,
[20]   On the regularity of weak solutions for a modified dissipative quasi-geostrophic equation [J].
Zhang, Qian .
REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2017, 111 (01) :89-100