Existence of positive solutions to discrete second-order boundary value problems with indefinite weight

被引:0
作者
Chenghua Gao
Guowei Dai
Ruyun Ma
机构
[1] Northwest Normal University,Department of Mathematics
来源
Advances in Difference Equations | / 2012卷
关键词
discrete indefinite weighted problems; positive solutions; principal eigenvalue; bifurcation; existence;
D O I
暂无
中图分类号
学科分类号
摘要
Let T > 1 be an integer, T={1,2,...,T}. This article is concerned with the global structure of the set of positive solutions to the discrete second-order boundary value problems
引用
收藏
相关论文
共 29 条
  • [1] Delgado M(2004)On the existence and multiplicity of positive solutions for some indefinite nonlinear eigenvalue problem Proc Amer Math Soc 132 1721-1728
  • [2] Suárez A(2006)Positive mountain pass solutions for a semilinear elliptic equation with a sign-changing weight function Nonlinear Anal: TMA 64 409-416
  • [3] Afrouzi GA(2009)Existence and multiplicity of positive solutions of a nonlinear eigenvalue problem with indefinite weight function Appl Math Comput 215 1077-1083
  • [4] Brown KJ(2009)Global bifurcation of positive solutions of a second-order periodic boundary value problems with indefinite weight Nonlinear Anal: TMA 71 2119-2125
  • [5] Ma RY(1998)Positive solutions and nonlinear eigenvalue problems for third order difference equations Comput Math Appl 36 347-355
  • [6] Han XL(1997)Boundary value problems for discrete equations Appl Math Lett 10 83-89
  • [7] Ma RY(2001)On the existence of positive solutions for nonlinear differential equations with periodic boundary conditions J Comput Appl Math 132 341-356
  • [8] Xu J(2007)Existence of non-spurious solutions to discrete Dirichlet problems with lower and upper solutions Nonlinear Anal: TMA 67 1236-1245
  • [9] Han XL(2005)Nonlinear discrete Sturm-Liouville problems J Math Anal Appl 308 380-391
  • [10] Agarwal RP(2000)On a discrete nonlinear boundary value problem Linear Algebra Appl 313 193-201