Finite groups with supersolvable subgroups of even order

被引:0
作者
Wei Meng
Jiakuan Lu
机构
[1] Guilin University of Electronic Technology,School of Mathematics and Computing Science
[2] Guangxi Normal University,School of Mathematics and Statistics
来源
Ricerche di Matematica | 2024年 / 73卷
关键词
Maximal subgroup; Supersolvable subgroup; 2; -subgroup; 20D10; 20D20;
D O I
暂无
中图分类号
学科分类号
摘要
Let X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {X}$$\end{document} be a class of groups. A group G is called a X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {X}$$\end{document}-critical group if G∉X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G \not \in \mathcal {X}$$\end{document} whereas every proper subgroup of G is in X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {X}$$\end{document}. We call G a pd-group if |G| is divisible by a prime p. A group G is called a X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {X}$$\end{document}-semicritical group with respect to a prime p if G∉X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G \not \in \mathcal {X}$$\end{document}, but every proper pd-subgroup of G is in X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {X}$$\end{document}. Let U\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {U}$$\end{document} be a class of supersolvable groups. In this paper, we mainly study the U\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {U}$$\end{document}-semicritical groups with respect to 2. Furthermore, we describe the non-solvable groups whose every 2d-maximal subgroup is U\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {U}$$\end{document}-semicritical groups with respect to 2.
引用
收藏
页码:1059 / 1064
页数:5
相关论文
共 50 条
  • [41] Finite groups with S-quasinormal subgroups
    Meng, Wei
    Deng, Yan
    Lu, Jiakuan
    COMMUNICATIONS IN ALGEBRA, 2021, 49 (06) : 2547 - 2555
  • [42] Finite Groups with Arithmetic Restrictions on Maximal Subgroups
    N. V. Maslova
    Algebra and Logic, 2015, 54 : 65 - 69
  • [43] ON SQ-SUPPLEMENTED SUBGROUPS OF FINITE GROUPS
    Al-Sharo, Khaled A.
    COMMUNICATIONS IN ALGEBRA, 2012, 40 (10) : 3690 - 3703
  • [44] ON FINITE GROUPS FACTORIZABLE BY WEAKLY SUBNORMAL SUBGROUPS
    Trofimuk, A. A.
    SIBERIAN MATHEMATICAL JOURNAL, 2021, 62 (06) : 1133 - 1139
  • [45] On finite groups with some subgroups of prime indices
    Monakhov, V. S.
    Tyutyanov, V. N.
    SIBERIAN MATHEMATICAL JOURNAL, 2007, 48 (04) : 666 - 668
  • [46] On Jn-normal subgroups of finite groups
    Guo W.
    Yu X.
    Siberian Mathematical Journal, 2011, 52 (2) : 197 - 206
  • [47] Finite groups with supersoluble subgroups of given orders
    Monakhov, V. S.
    Tyutyanov, V. N.
    TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN, 2019, 25 (04): : 155 - 163
  • [48] Finite Groups with F-Subnormal Subgroups
    Konovalova, M. N.
    MATHEMATICAL NOTES, 2020, 108 (1-2) : 201 - 208
  • [49] On CISE-normal subgroups of finite groups
    Xu, Yong
    Zhao, Tao
    Li, Xianhua
    TURKISH JOURNAL OF MATHEMATICS, 2012, 36 (02) : 231 - 243
  • [50] Finite groups with some SB-subgroups
    Lu, Jiakuan
    Zhang, Xueqin
    Meng, Wei
    Zhang, Boru
    COMMUNICATIONS IN ALGEBRA, 2023, 51 (01) : 161 - 167