Finite groups with supersolvable subgroups of even order

被引:0
作者
Wei Meng
Jiakuan Lu
机构
[1] Guilin University of Electronic Technology,School of Mathematics and Computing Science
[2] Guangxi Normal University,School of Mathematics and Statistics
来源
Ricerche di Matematica | 2024年 / 73卷
关键词
Maximal subgroup; Supersolvable subgroup; 2; -subgroup; 20D10; 20D20;
D O I
暂无
中图分类号
学科分类号
摘要
Let X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {X}$$\end{document} be a class of groups. A group G is called a X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {X}$$\end{document}-critical group if G∉X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G \not \in \mathcal {X}$$\end{document} whereas every proper subgroup of G is in X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {X}$$\end{document}. We call G a pd-group if |G| is divisible by a prime p. A group G is called a X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {X}$$\end{document}-semicritical group with respect to a prime p if G∉X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G \not \in \mathcal {X}$$\end{document}, but every proper pd-subgroup of G is in X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {X}$$\end{document}. Let U\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {U}$$\end{document} be a class of supersolvable groups. In this paper, we mainly study the U\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {U}$$\end{document}-semicritical groups with respect to 2. Furthermore, we describe the non-solvable groups whose every 2d-maximal subgroup is U\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {U}$$\end{document}-semicritical groups with respect to 2.
引用
收藏
页码:1059 / 1064
页数:5
相关论文
共 50 条
  • [1] Finite groups with supersolvable subgroups of even order
    Meng, Wei
    Lu, Jiakuan
    RICERCHE DI MATEMATICA, 2024, 73 (02) : 1059 - 1064
  • [2] Finite groups whose maximal subgroups of order divisible by all the primes are supersolvable
    Alexander Moretó
    Monatshefte für Mathematik, 2021, 195 : 497 - 500
  • [3] Finite groups whose maximal subgroups of order divisible by all the primes are supersolvable
    Moreto, Alexander
    MONATSHEFTE FUR MATHEMATIK, 2021, 195 (03): : 497 - 500
  • [4] Finite Groups with Nilpotent Subgroups of Even Order
    Deng, Yan
    Meng, Wei
    Lu, Jiakuan
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2022, 48 (03) : 1143 - 1152
  • [5] Finite Groups with Nilpotent Subgroups of Even Order
    Yan Deng
    Wei Meng
    Jiakuan Lu
    Bulletin of the Iranian Mathematical Society, 2022, 48 : 1143 - 1152
  • [6] FINITE GROUPS ALL OF WHOSE MAXIMAL SUBGROUPS OF EVEN ORDER ARE Hp-GROUPS
    Meng, Wei
    Lu, Jiakuan
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2014, 13 (05)
  • [7] LARGE SUBGROUPS OF A FINITE GROUP OF EVEN ORDER
    Amberg, Bernhard
    Kazarin, Lev
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2012, 140 (01) : 65 - 68
  • [8] ON SUPERSOLVABLE GROUPS WHOSE MAXIMAL SUBGROUPS OF THE SYLOW SUBGROUPS ARE SUBNORMAL
    Guo, Pengfei
    Xiu, Xingqiang
    Xu, Guangjun
    REVISTA DE LA UNION MATEMATICA ARGENTINA, 2019, 60 (02): : 315 - 322
  • [9] On complemented subgroups of finite groups
    A. Ballester-Bolinches
    Guo Xiuyun
    Archiv der Mathematik, 1999, 72 : 161 - 166
  • [10] On Nearly ℳ-Supplemented Subgroups of Finite Groups
    J. Guo
    J. Zhang
    L. Miao
    Ukrainian Mathematical Journal, 2014, 66 : 66 - 76