Protein-ligand binding affinity determination by the waterLOGSY method: An optimised approach considering ligand rebinding

被引:0
|
作者
Renjie Huang
Arnaud Bonnichon
Timothy D. W. Claridge
Ivanhoe K. H. Leung
机构
[1] School of Chemical Sciences,Department of Chemistry
[2] The University of Auckland,undefined
[3] Private Bag 92019,undefined
[4] University of Oxford,undefined
[5] Chemistry Research Laboratory,undefined
[6] Université D’Auvergne,undefined
[7] 49 Boulevard François-Mitterrand,undefined
[8] CS 60032,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
WaterLOGSY is a popular ligand-observed NMR technique to screen for protein-ligand interactions, yet when applied to measure dissociation constants (KD) through ligand titration, the results were found to be strongly dependent on sample conditions. Herein, we show that accurate KDs can be obtained by waterLOGSY with optimised experimental setup.
引用
收藏
相关论文
共 50 条
  • [1] Protein-ligand binding affinity determination by the waterLOGSY method: An optimised approach considering ligand rebinding
    Huang, Renjie
    Bonnichon, Arnaud
    Claridge, Timothy D. W.
    Leung, Ivanhoe K. H.
    SCIENTIFIC REPORTS, 2017, 7
  • [2] Origin of high affinity protein-ligand binding
    Sharp, Kim A.
    Harpole, Kyle
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2012, 244
  • [3] Predicting protein-ligand binding affinity with gnina
    Francoeur, Paul
    Koes, David
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 258
  • [4] DEELIG: A Deep Learning Approach to Predict Protein-Ligand Binding Affinity
    Ahmed, Asad
    Mam, Bhavika
    Sowdhamini, Ramanathan
    BIOINFORMATICS AND BIOLOGY INSIGHTS, 2021, 15
  • [5] DeepDTAF: a deep learning method to predict protein-ligand binding affinity
    Wang, Kaili
    Zhou, Renyi
    Li, Yaohang
    Li, Min
    BRIEFINGS IN BIOINFORMATICS, 2021, 22 (05)
  • [6] Determination of intracellular protein-ligand binding affinity by competition binding in-cell NMR
    Luchinat, Enrico
    Barbieri, Letizia
    Cremonini, Matteo
    Pennestri, Matteo
    Nocentini, Alessio
    Supuran, Claudiu T.
    Banci, Lucia
    ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY, 2021, 77 : 1270 - 1281
  • [7] DeepAtom: A Framework for Protein-Ligand Binding Affinity Prediction
    Li, Yanjun
    Rezaei, Mohammad A.
    Li, Chenglong
    Li, Xiaolin
    2019 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE (BIBM), 2019, : 303 - 310
  • [8] REPRESENTATION OF AFFINITY IN THE CASE OF COOPERATIVITY IN PROTEIN-LIGAND BINDING
    MONOT, C
    LAPICQUE, F
    BENAMGHAR, L
    MULLER, N
    PAYAN, E
    NETTER, P
    FUNDAMENTAL & CLINICAL PHARMACOLOGY, 1994, 8 (01) : 18 - 25
  • [9] Prediction of protein-ligand binding affinity with deep learning
    Wang, Yuxiao
    Jiao, Qihong
    Wang, Jingxuan
    Cai, Xiaojun
    Zhao, Wei
    Cui, Xuefeng
    COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2023, 21 : 5796 - 5806
  • [10] Ensembling methods for protein-ligand binding affinity prediction
    Cader, Jiffriya Mohamed Abdul
    Newton, M. A. Hakim
    Rahman, Julia
    Cader, Akmal Jahan Mohamed Abdul
    Sattar, Abdul
    SCIENTIFIC REPORTS, 2024, 14 (01):