A Novel Count of the Spanning Trees of a Cube

被引:0
作者
Thomas W. Mattman
机构
[1] California State University,Department of Mathematics and Statistics
来源
Graphs and Combinatorics | 2024年 / 40卷
关键词
Spanning trees; Hypercube; Ihara zera function; Artin-Ihara L function; Primary 05C30; Secondary 05C05; 05C25;
D O I
暂无
中图分类号
学科分类号
摘要
Using the special value at u=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u=1$$\end{document} of the Artin-Ihara L-function, we give a short proof of the count of the number of spanning trees in the n-cube.
引用
收藏
相关论文
共 5 条
[1]  
Baker M(2009)Harmonic morphisms and hyperelliptic graphs Int. Math. Res. Not. IMRN 15 2914-2955
[2]  
Norine S(2012)On the spanning trees of the hypercube and other products of graphs Electron. J. Combin. 19 51-261
[3]  
Bernardi O(2017)Laplacian matrices and spanning trees of tree graphs Ann. Fac. Sci. Toulouse Math. (6) 26 235-undefined
[4]  
Biane P(undefined)undefined undefined undefined undefined-undefined
[5]  
Chapuy G(undefined)undefined undefined undefined undefined-undefined