Discontinuous Galerkin Method for the Interior Transmission Eigenvalue Problem in Inverse Scattering Theory

被引:0
|
作者
Jian Meng
机构
[1] National University of Defense Technology,Department of Mathematics, College of Science
来源
Journal of Scientific Computing | 2023年 / 96卷
关键词
Discontinuous Galerkin method; Interior transmission eigenvalue problem; The spectral approximation and optimal error estimates; Direct and inverse spectral problems; 65N25; 65N30; 65N15;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we are devoted to design the discontinuous Galerkin method to discrete the non-selfadjoint and nonlinear interior transmission eigenvalue problem. Such eigenvalues determined from scattering data provide information about material properties of the scattering media and hence can be applied to target identification and nondestructive testing. The spectral approximation of the discontinuous Galerkin method is proved and the convergence of the approximate transmission eigenvalue is at order O(h2ℓ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(h^{2\ell })$$\end{document}(ℓ≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell \ge 1$$\end{document}), notably observing the convergence order at O(h2ℓ-2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(h^{2\ell -2})$$\end{document}(ℓ≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell \ge 2$$\end{document}) of the finite element method and the C0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^{0}$$\end{document} interior penalty Galerkin method, and at O(h2ℓ-1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(h^{2\ell -1})$$\end{document}(ℓ≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell \ge 1$$\end{document}) of the virtual element method theoretically and numerically. Representative numerical examples are implemented to demonstrate the theoretical results, including the optimal convergence on the classical triangular mesh and the developed polygonal meshes, the influence of the penalty parameter in the scheme, transmission eigenvalues on the stratified media and the inverse spectral problem.
引用
收藏
相关论文
共 50 条