Quantitative arithmetic of diagonal degree 2 K3 surfaces

被引:0
|
作者
Damián Gvirtz
Daniel Loughran
Masahiro Nakahara
机构
[1] Leibniz Universität Hannover,Institut für Algebra, Zahlentheorie und Diskrete Mathematik, Fakultät für Mathematik und Physik
[2] University of Bath,Department of Mathematical Sciences
来源
Mathematische Annalen | 2022年 / 384卷
关键词
14G05; 14F22;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we study the existence of rational points for the family of K3 surfaces over Q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathbb {Q}}}$$\end{document} given by w2=A1x16+A2x26+A3x36.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} w^2 = A_1x_1^6 + A_2x_2^6 + A_3x_3^6. \end{aligned}$$\end{document}When the coefficients are ordered by height, we show that the Brauer group is almost always trivial, and find the exact order of magnitude of surfaces for which there is a Brauer–Manin obstruction to the Hasse principle. Our results show definitively that K3 surfaces can have a Brauer–Manin obstruction to the Hasse principle that is only explained by odd order torsion.
引用
收藏
页码:1 / 75
页数:74
相关论文
empty
未找到相关数据