Improving gene expression data interpretation by finding latent factors that co-regulate gene modules with clinical factors

被引:0
作者
Tianwei Yu
Yun Bai
机构
[1] Emory University,Department of Biostatistics and Bioinformatics, Rollins School of Public Health
[2] Philadelphia College of Osteopathic Medicine,Department of Pharmaceutical Sciences, School of Pharmacy
来源
BMC Genomics | / 12卷
关键词
Partial Little Square; Latent Factor; Clinical Factor; Triple Negative Breast Cancer; Projection Length;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 212 条
[1]  
Saeys Y(2007)A review of feature selection techniques in bioinformatics Bioinformatics 23 2507-2517
[2]  
Inza I(2010)Dimension reduction for high-dimensional data Methods Mol Biol 620 417-434
[3]  
Larranaga P(2007)Analyzing gene expression data in terms of gene sets: methodological issues Bioinformatics 23 980-987
[4]  
Li L(2008)Microarray-based gene set analysis: a comparison of current methods Bmc Bioinformatics 9 502-754
[5]  
Goeman JJ(2009)Gene set internal coherence in the context of functional profiling BMC Genomics 10 197-532
[6]  
Buhlmann P(2009)Evidence for gene length as a determinant of gene coexpression in protein complexes Genetics 183 751-16880
[7]  
Song S(2009)Patterns of co-expression for protein complexes by size in Saccharomyces cerevisiae Nucleic Acids Res 37 526-15566
[8]  
Black MA(2002)Genome-wide coexpression dynamics: theory and application Proc Natl Acad Sci USA 99 16875-15527
[9]  
Montaner D(2004)A system for enhancing genome-wide coexpression dynamics study Proc Natl Acad Sci USA 101 15561-377
[10]  
Minguez P(2003)Network component analysis: reconstruction of regulatory signals in biological Proc Natl Acad Sci USA 100 15522-931