Sensitivity analysis of a linear and unbranched chemical process with n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n$$\end{document} steps

被引:0
作者
L. Bayón
J. A. Otero
M. M. Ruiz
P. M. Suárez
C. Tasis
机构
[1] University of Oviedo,Department of Mathematics
关键词
Optimal control; Chemical process; Sensitivity analysis; 49J30; 49M05; 92E20; 80A30; 92C40;
D O I
10.1007/s10910-014-0458-2
中图分类号
学科分类号
摘要
In this paper, we present a quasi-analytical method to calculate the optimal enzyme concentrations in a chemical process, considering the minimization of the operation time. The resulting constrained optimal control problem is solved using Pontryagin’s Minimum Principle. First, our method allows us to obtain the generalized solution of an n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n$$\end{document}-step system with an unbranched scheme and bilinear kinetic models and non-equal catalytic efficiencies of the enzymes. Second, we discuss the sensitivity analysis of these catalytic parameters in detail.
引用
收藏
页码:925 / 940
页数:15
相关论文
共 34 条
  • [1] Klipp E(2002)Prediction of temporal gene expression. Metabolic optimization by re-distribution of enzyme activities Eur. J. Biochem. 269 5406-5413
  • [2] Heinrich R(2010)Modelling the optimal timing in metabolic pathway activation-use of pontryagin’s maximum principle and role of the golden section BioSystems 101 67-77
  • [3] Holzhutter HG(2009)Sequential activation of metabolic pathways: a dynamic optimization approach Bull. Math. Biol. 71 1851-1872
  • [4] Bartl M(2014)Optimal control of a linear unbranched chemical process with steps: the quasi-analytical solution J. Math. Chem. 52 1036-1049
  • [5] Li P(1990)Sensitivity analysis of complex kinetic systems. Tools and applications J. Math. Chem. 5 203-248
  • [6] Schuster S(1994)A review of techniques for parameter sensitivity analysis of environmental models Environ. Monit. Assess. 32 135-154
  • [7] Oyarzun D(1999)Generalization of the theory of transition times in metabolic pathways: a geometrical approach Biophys. J. 77 23-36
  • [8] Ingalls B(1994)Application of the transition time of metabolic systems as a criterion for optimization of metabolic processes Biotechnol. Bioeng. 44 291-296
  • [9] Middleton R(2005)Optimization methods for the verification of second order sufficient conditions for bang-bang controls Optim. Control Appl. Methods 26 129-156
  • [10] Kalamatianos D(2005)Sensitivity analysis for chemical models Chem. Rev. 105 2811-2828