TQ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${ \mathsf {TQ} }$$\end{document}-completion and the Taylor tower of the identity functor

被引:0
|
作者
Nikolas Schonsheck
机构
[1] University of Delaware,Department of Mathematical Sciences
关键词
Spectra; Functor calculus; Taylor tower; Operads; Completion; Topological Quillen homology;
D O I
10.1007/s40062-022-00303-0
中图分类号
学科分类号
摘要
The goal of this short paper is to study the convergence of the Taylor tower of the identity functor in the context of operadic algebras in spectra. Specifically, we show that if A is a (-1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(-1)$$\end{document}-connected O\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${ \mathcal {O} }$$\end{document}-algebra with 0-connected TQ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${ \mathsf {TQ} }$$\end{document}-homology spectrum TQ(A)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${ \mathsf {TQ} }(A)$$\end{document}, then there is a natural weak equivalence P∞(id)A≃ATQ∧\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_\infty ({ \mathrm {id} })A \simeq A^\wedge _{ \mathsf {TQ} }$$\end{document} between the limit of the Taylor tower of the identity functor evaluated on A and the TQ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${ \mathsf {TQ} }$$\end{document}-completion of A. Since, in this context, the identity functor is only known to be 0-analytic, this result extends knowledge of the Taylor tower of the identity beyond its “radius of convergence.”
引用
收藏
页码:201 / 216
页数:15
相关论文
共 14 条