Carnot-carathéodory homogeneous cone condition and carnot-carathéodory balls in heisenberg groups

被引:0
作者
Belykh A.V. [1 ]
Greshnov A.V. [1 ,2 ]
机构
[1] Novosibirsk State University, 2, ul. Pirogova, Novosibirsk
[2] Sobolev Institute of Mathematics SB RAS, 4, pr. Akad, Koptyuga
基金
俄罗斯基础研究基金会;
关键词
Short Path; Heisenberg Group; Parametrized Curve; Cone Condition; Carnot Group;
D O I
10.1007/s10958-013-1617-x
中图分类号
学科分类号
摘要
We study properties of extremals of the variational problem about the shortest paths in the Carnot-Carathéodory metric on Heisenberg groups. We prove that the Carnot-Carathéodory balls in Heisenberg groups satisfy the Carnot-Carathéodory homogeneous cone condition. Bibliography: 17 titles. © 2013 Springer Science+Business Media New York.
引用
收藏
页码:779 / 790
页数:11
相关论文
共 17 条
  • [1] Maz'ya V.G., Sobolev Spaces, (1985)
  • [2] Jerison D., Kenig C., Boundary behavior of harmonic functions in non-tangentially accessible domain, Adv. Math, 47, 1, pp. 80-147, (1982)
  • [3] Capogna L., Garofalo N., Non tangentially accessible domains for Carnot-Carathéodory metrics and a Fatou type theorem, C. R. Acad. Sci., Paris, Sér. I, Math, 12, 321, pp. 1565-1570, (1995)
  • [4] Capogna L., Garofalo N., Boundary behavior of non-negative solutions of subelliptic equations in NTA-domains for Carnot-Caratheodory metrics, Fourier Anal. Appl, 4, 4, pp. 403-432, (1998)
  • [5] Gromov M., Carnot-Carathéodory spaces seen from within, Sub-Reimannian Geometry, pp. 79-323, (1996)
  • [6] Pansu P., Métriques de Carnot-Carathéodory et quasiisométries des espacies symétriques de rang un, Annals Math, 129, pp. 1-60, (1989)
  • [7] Bonfiglioli A., Lanconelli E., Uguzzoni F., Stratified Lie Groups and Potential Theory for their Sub-Laplacian, (2007)
  • [8] Korani A., Reimann H.M., Foundation for the theory of quasiconformal mappings on the Heisenberg groups, Adv. Math, 86, 111, pp. 1-87, (1995)
  • [9] Rashevskii P.K., On junction of any two points of a completely nonholonomic space by an admissible line, Uchen. Zap. Moskov. Gos. Ped. Inst., Ser. Fiz.-Mat, 3, 2, pp. 83-94, (1938)
  • [10] Chow W.L., Math. Ann, 117, pp. 98-105, (1939)