On Holomorphic Curves Tangent to Real Hypersurfaces of Infinite Type

被引:0
作者
Joe Kamimoto
机构
[1] Kyushu University,Faculty of Mathematics
来源
The Journal of Geometric Analysis | 2021年 / 31卷
关键词
Holomorphic curve; Real hypersurface; D’Angelo type; Bloom–Graham type; Infinite type; 32F18 (32T25);
D O I
暂无
中图分类号
学科分类号
摘要
The purpose of this paper is to investigate the geometric properties of real hypersurfaces of D’Angelo infinite type in Cn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathbb {C}}}^n$$\end{document}. In order to understand the situation of flatness of these hypersurfaces, it is natural to ask whether there exists a nonconstant holomorphic curve tangent to a given hypersurface to infinite order. A sufficient condition for this existence is given by using Newton polyhedra, which is an important concept in singularity theory. More precisely, equivalence conditions are given in the case of some model hypersurfaces.
引用
收藏
页码:8063 / 8079
页数:16
相关论文
共 21 条
[1]  
Bloom T(1977)A geometric characterization of points of type J. Differ. Geom. 12 171-182
[2]  
Graham I(1983) on real submanifolds of Ann. Math. (2) 117 147-171
[3]  
Catlin D(1987)Necessary conditions for subellipticity of the Ann. Math. (2) 126 131-191
[4]  
Catlin D(1982)-Neumann problem Ann. Math. (2) 115 615-637
[5]  
D’Angelo JP(2014)Subelliptic estimates for the Illinois J. Math. 58 1-10
[6]  
Fornæss JE(2010)-Neumann problem on pseudoconvex domains Math. Ann. 347 979-991
[7]  
Lee L(2012)Real hypersurfaces, orders of contact, and applications Complex Var. Elliptic Equ. 57 705-717
[8]  
Zhang Y(2008)Formal complex curves in real smooth hypersurfaces Commun. Algebra 36 2947-2957
[9]  
Fornæss JE(2015)Maximally tangent complex curves for germs of finite type Trans. Am. Math. Soc. 367 867-885
[10]  
Stensønes B(2005) pseudoconvex domains in Math. Res. Lett. 12 897-910