A monolithic bipolar CMOS electronic–plasmonic high-speed transmitter

被引:3
作者
Ueli Koch
Christopher Uhl
Horst Hettrich
Yuriy Fedoryshyn
Claudia Hoessbacher
Wolfgang Heni
Benedikt Baeuerle
Bertold I. Bitachon
Arne Josten
Masafumi Ayata
Huajun Xu
Delwin L. Elder
Larry R. Dalton
Elad Mentovich
Paraskevas Bakopoulos
Stefan Lischke
Andreas Krüger
Lars Zimmermann
Dimitris Tsiokos
Nikos Pleros
Michael Möller
Juerg Leuthold
机构
[1] ETH Zurich,Department of Chemistry
[2] Institute of Electromagnetic Fields,undefined
[3] Saarland University,undefined
[4] Chair of Electronics and Circuits,undefined
[5] MICRAM Microelectronic GmbH,undefined
[6] Polariton Technologies Ltd,undefined
[7] University of Washington,undefined
[8] Mellanox Technologies Ltd,undefined
[9] IHP – Leibniz-Institut für innovative Mikroelektronik,undefined
[10] Technische Universitaet Berlin,undefined
[11] Aristotle University of Thessaloniki,undefined
[12] Center for Interdisciplinary Research and Innovation,undefined
来源
Nature Electronics | 2020年 / 3卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
To address the challenge of increasing data rates, next-generation optical communication networks will require the co-integration of electronics and photonics. Heterogeneous integration of these technologies has shown promise, but will eventually become bandwidth-limited. Faster monolithic approaches will therefore be needed, but monolithic approaches using complementary metal–oxide–semiconductor (CMOS) electronics and silicon photonics are typically limited by their underlying electronic or photonic technologies. Here, we report a monolithically integrated electro-optical transmitter that can achieve symbol rates beyond 100 GBd. Our approach combines advanced bipolar CMOS with silicon plasmonics, and addresses key challenges in monolithic integration through co-design of the electronic and plasmonic layers, including thermal design, packaging and a nonlinear organic electro-optic material. To illustrate the potential of our technology, we develop two modulator concepts—an ultra-compact plasmonic modulator and a silicon-plasmonic modulator with photonic routing—both directly processed onto the bipolar CMOS electronics.
引用
收藏
页码:338 / 345
页数:7
相关论文
共 54 条
[1]  
Thraskias CA(2018)Survey of photonic and plasmonic interconnect technologies for intra-datacenter and high-performance computing communications IEEE Commun. Surveys Tutorials 20 2758-2783
[2]  
Winzer PJ(2017)From scaling disparities to integrated parallelism: a decathlon for a decade J. Lightwave Technol. 35 1099-1115
[3]  
Neilson DT(2019)Optics in computing: from photonic network-on-chip to chip-to-chip interconnects and disintegrated architectures J. Lightwave Technol. 37 363-379
[4]  
Alexoudi T(2019)High-speed VCSEL-based transceiver for 200 GbE short-reach intra-datacenter optical interconnects Appl. Sci. 9 2488-613
[5]  
Kanakis G(2018)40 Gbit/s 850 nm VCSEL-based full-CMOS optical link with power-data rate adaptivity IEEE Photon. Technol. Lett. 30 611-104
[6]  
Szilagyi L(2018)Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages Nature 562 101-364
[7]  
Khafaji M(2019)High-performance hybrid silicon and lithium niobate Mach–Zehnder modulators for 100 Gbit s Nat. Photon. 13 359-1125
[8]  
Pliva J(2010) and beyond IEEE J. Sel. Top. Quantum Electron. 16 1113-28543
[9]  
Henker R(2012)InP photonic integrated circuits Opt. Express 20 28538-1455
[10]  
Ellinger F(2016)Serial 100 Gb/s connectivity based on polymer photonics and InP-DHBT electronics J. Lightwave Technol. 35 1450-102