A Family of Periodic Motions to Chaos with Infinite Homoclinic Orbits in the Lorenz System

被引:0
作者
Siyu Guo
Albert C. J. Luo
机构
[1] Department of Mechanical and Mechatronics Engineering,
[2] Southern Illinois University Edwardsville,undefined
来源
Lobachevskii Journal of Mathematics | 2021年 / 42卷
关键词
Lorenz system; homoclinic orbits; periodic motions; Lorenz attractors;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:3382 / 3437
页数:55
相关论文
共 57 条
[1]  
Guo S.(2021)On infinite homoclinic orbits induced by unstable periodic orbits in the Lorenz system Chaos 31 043106-406
[2]  
Luo A. C. J.(2021)Bifurcation trees of (1:2)-asymmetric periodic motions with corresponding infinite homoclinic orbits in the Lorenz system J. Vibrat. Test. Syst. Dyn. 5 373-141
[3]  
Guo S.(1963)Deterministic nonperiodic flow J. Atmos. Sci. 20 130-204
[4]  
Luo A. C. J.(1978)A generalized Lorenz system Commun. Math. Phys. 60 193-1202
[5]  
Lorenz E. N.(1999)The Lorenz attractor exists C.R. Acad. Sci., Ser. I: Math. 328 1197-397
[6]  
Curry J. H.(1967)On a Poincaré–Birkhoff problem Mat. Sb. 116 378-188
[7]  
Tucker W.(1994)A proof that the Lorenz equations have a homoclinic orbit J. Differ. Equat. 113 166-156
[8]  
Shilnikov L. P.(1973)On three-dimensional dynamical systems close to systems with a structurally unstable homoclinic curve. II Mat. Sb. 90 139-339
[9]  
Hastings S. P.(1977)Origin and structure of the Lorenz attractor Dokl. Akad. Nauk SSSR 234 336-460
[10]  
Troy W. C.(1978)The topological classification of Lorenz attractors Math. Proc. Cambridge Phil. Soc. 83 451-72