Curved A∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A_{\infty }$$\end{document}-algebras and gauge theory

被引:0
作者
Svetoslav Zahariev
机构
[1] LaGuardia Community College of the City University of New York,MEC Department
关键词
-algebra; Gauge theory; Chain contraction; 70S15; 55U99;
D O I
10.1007/s40062-015-0119-6
中图分类号
学科分类号
摘要
We propose a general notion of algebraic gauge theory obtained via extracting the main properties of classical gauge theory. Building on a recent work on transferring curved A∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A_{\infty }$$\end{document}-structures we show that, under certain technical conditions, algebraic gauge theories can be transferred along chain contractions. Specializing to the case of the contraction from differential forms to cochains, we obtain a simplicial gauge theory on the matrix-valued simplicial cochains of a triangulated manifold. In particular, one obtains discrete notions of connection, curvature, gauge transformation and gauge invariant action.
引用
收藏
页码:1 / 15
页数:14
相关论文
共 50 条
[31]   Invertibility Criteria in C∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varvec{C^*}}$$\end{document}-algebras of Functional Operators with Shifts and PQC\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varvec{PQC}}$$\end{document} Coefficients [J].
M. A. Bastos ;
C. A. Fernandes ;
Yu. I. Karlovich .
Integral Equations and Operator Theory, 2019, 91 (3)
[32]   Nonlinear Maps Preserving the Mixed Type Product (M⋄N∘W)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(M\diamond N \circ W)$$\end{document} on ∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$*$$\end{document}-Algebras [J].
Mohammad Aslam Siddeeque ;
Raof Ahmad Bhat ;
Abbas Hussain Shikeh .
Iranian Journal of Science, 2024, 48 (5) :1307-1312
[35]   Gauge theories on the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\kappa$\end{document}-Minkowski spacetime [J].
M. Dimitrijević ;
F. Meyer ;
L. Möller ;
J. Wess .
The European Physical Journal C - Particles and Fields, 2004, 36 (1) :117-126
[36]   Morphisms on EMV\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${ EMV}$$\end{document}-algebras and their applications [J].
Anatolij Dvurečenskij ;
Omid Zahiri .
Soft Computing, 2018, 22 (22) :7519-7537
[38]   On finite elements in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f$$\end{document}-algebras and in product algebras [J].
Helena Malinowski ;
Martin R. Weber .
Positivity, 2013, 17 (3) :819-840