Strong Sard conjecture and regularity of singular minimizing geodesics for analytic sub-Riemannian structures in dimension 3

被引:0
|
作者
A. Belotto da Silva
A. Figalli
A. Parusiński
L. Rifford
机构
[1] Université Aix-Marseille,Institut de Mathématiques de Marseille (UMR CNRS 7373), Centre de Mathématiques et Informatique
[2] Université Paris Cité,IMJ
[3] ETH Zürich,PRG, CNRS 7586, Institut de Mathématiques de Jussieu Paris Rive Gauche
[4] Université Côte d’Azur,Mathematics Department
[5] Université Côte d’Azur,CNRS, Labo. J.
来源
Inventiones mathematicae | 2022年 / 229卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we prove the strong Sard conjecture for sub-Riemannian structures on 3-dimensional analytic manifolds. More precisely, given a totally nonholonomic analytic distribution of rank 2 on a 3-dimensional analytic manifold, we investigate the size of the set of points that can be reached by singular horizontal paths starting from a given point and prove that it has Hausdorff dimension at most 1. In fact, provided that the lengths of the singular curves under consideration are bounded with respect to a given complete Riemannian metric, we demonstrate that such a set is a semianalytic curve. As a consequence, combining our techniques with recent developments on the regularity of sub-Riemannian minimizing geodesics, we prove that minimizing sub-Riemannian geodesics in 3-dimensional analytic manifolds are always of class C1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^1$$\end{document}, and actually they are analytic outside of a finite set of points.
引用
收藏
页码:395 / 448
页数:53
相关论文
共 49 条