Strong Sard conjecture and regularity of singular minimizing geodesics for analytic sub-Riemannian structures in dimension 3

被引:0
|
作者
A. Belotto da Silva
A. Figalli
A. Parusiński
L. Rifford
机构
[1] Université Aix-Marseille,Institut de Mathématiques de Marseille (UMR CNRS 7373), Centre de Mathématiques et Informatique
[2] Université Paris Cité,IMJ
[3] ETH Zürich,PRG, CNRS 7586, Institut de Mathématiques de Jussieu Paris Rive Gauche
[4] Université Côte d’Azur,Mathematics Department
[5] Université Côte d’Azur,CNRS, Labo. J.
来源
Inventiones mathematicae | 2022年 / 229卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we prove the strong Sard conjecture for sub-Riemannian structures on 3-dimensional analytic manifolds. More precisely, given a totally nonholonomic analytic distribution of rank 2 on a 3-dimensional analytic manifold, we investigate the size of the set of points that can be reached by singular horizontal paths starting from a given point and prove that it has Hausdorff dimension at most 1. In fact, provided that the lengths of the singular curves under consideration are bounded with respect to a given complete Riemannian metric, we demonstrate that such a set is a semianalytic curve. As a consequence, combining our techniques with recent developments on the regularity of sub-Riemannian minimizing geodesics, we prove that minimizing sub-Riemannian geodesics in 3-dimensional analytic manifolds are always of class C1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^1$$\end{document}, and actually they are analytic outside of a finite set of points.
引用
收藏
页码:395 / 448
页数:53
相关论文
共 49 条
  • [21] Sub-Riemannian (2, 3, 5, 6)-Structures
    Yu. L. Sachkov
    E. F. Sachkova
    Doklady Mathematics, 2021, 103 : 61 - 65
  • [22] On Sub-Riemannian Geodesics in SE(3) Whose Spatial Projections do not Have Cusps
    Duits, R.
    Ghosh, A.
    Dela Haije, T. C. J.
    Mashtakov, A.
    JOURNAL OF DYNAMICAL AND CONTROL SYSTEMS, 2016, 22 (04) : 771 - 805
  • [23] QUANTUM LIMITS OF PERTURBED SUB-RIEMANNIAN CONTACT LAPLACIANS IN DIMENSION 3
    Arnaiz, Victor
    Riviere, Gabriel
    JOURNAL DE L ECOLE POLYTECHNIQUE-MATHEMATIQUES, 2024, 11
  • [24] On Sub-Riemannian Geodesics in SE(3) Whose Spatial Projections do not Have Cusps
    R. Duits
    A. Ghosh
    T. C. J. Dela Haije
    A. Mashtakov
    Journal of Dynamical and Control Systems, 2016, 22 : 771 - 805
  • [25] Sub-Riemannian geodesics in SO(3) with application to vessel tracking in spherical images of retina
    Mashtakov, A. P.
    Duits, Remco
    Sachkov, Yu. L.
    Bekkers, Erik
    Beschastnyi, I. Yu.
    DOKLADY MATHEMATICS, 2017, 95 (02) : 168 - 171
  • [26] Geodesics and shortest arcs of a special sub-Riemannian metric on the Lie group SO(3)
    Berestovskii, V. N.
    Zubareva, I. A.
    SIBERIAN MATHEMATICAL JOURNAL, 2015, 56 (04) : 601 - 611
  • [27] Sub-Riemannian geodesics in SO(3) with application to vessel tracking in spherical images of retina
    A. P. Mashtakov
    Remco Duits
    Yu. L. Sachkov
    Erik Bekkers
    I. Yu. Beschastnyi
    Doklady Mathematics, 2017, 95 : 168 - 171
  • [28] Geodesics and shortest arcs of a special sub-Riemannian metric on the Lie group SO(3)
    V. N. Berestovskiĭ
    I. A. Zubareva
    Siberian Mathematical Journal, 2015, 56 : 601 - 611
  • [29] Sub-Riemannian structures on 3D lie groups
    A. Agrachev
    D. Barilari
    Journal of Dynamical and Control Systems, 2012, 18 : 21 - 44
  • [30] Sub-Riemannian (2,3,5,6)-Structures
    Sachkov, Yu. L.
    Sachkova, E. F.
    DOKLADY MATHEMATICS, 2021, 103 (01) : 61 - 65