Strong Sard conjecture and regularity of singular minimizing geodesics for analytic sub-Riemannian structures in dimension 3

被引:0
|
作者
A. Belotto da Silva
A. Figalli
A. Parusiński
L. Rifford
机构
[1] Université Aix-Marseille,Institut de Mathématiques de Marseille (UMR CNRS 7373), Centre de Mathématiques et Informatique
[2] Université Paris Cité,IMJ
[3] ETH Zürich,PRG, CNRS 7586, Institut de Mathématiques de Jussieu Paris Rive Gauche
[4] Université Côte d’Azur,Mathematics Department
[5] Université Côte d’Azur,CNRS, Labo. J.
来源
Inventiones mathematicae | 2022年 / 229卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we prove the strong Sard conjecture for sub-Riemannian structures on 3-dimensional analytic manifolds. More precisely, given a totally nonholonomic analytic distribution of rank 2 on a 3-dimensional analytic manifold, we investigate the size of the set of points that can be reached by singular horizontal paths starting from a given point and prove that it has Hausdorff dimension at most 1. In fact, provided that the lengths of the singular curves under consideration are bounded with respect to a given complete Riemannian metric, we demonstrate that such a set is a semianalytic curve. As a consequence, combining our techniques with recent developments on the regularity of sub-Riemannian minimizing geodesics, we prove that minimizing sub-Riemannian geodesics in 3-dimensional analytic manifolds are always of class C1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^1$$\end{document}, and actually they are analytic outside of a finite set of points.
引用
收藏
页码:395 / 448
页数:53
相关论文
共 49 条
  • [11] End-Point Equations and Regularity of Sub-Riemannian Geodesics
    Gian Paolo Leonardi
    Roberto Monti
    Geometric and Functional Analysis, 2008, 18 : 552 - 582
  • [12] Sub-Riemannian Geodesics on the 3-D Sphere
    Chang, Der-Chen
    Markina, Irina
    Vasil'ev, Alexander
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2009, 3 (02) : 361 - 377
  • [13] Geodesics in the sub-Riemannian problem on the group SO(3)
    Beschastnyi, I. Yu.
    Sachkov, Yu. L.
    SBORNIK MATHEMATICS, 2016, 207 (07) : 915 - 941
  • [14] Sub-Riemannian Geodesics on the 3-D Sphere
    Der-Chen Chang
    Irina Markina
    Alexander Vasil’ev
    Complex Analysis and Operator Theory, 2009, 3 : 361 - 377
  • [15] Quadratic sufficient conditions for strong minimality of abnormal sub-Riemannian geodesics
    Dmitruk, AV
    RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS, 1999, 6 (03) : 363 - 372
  • [16] On the regularity of abnormal minimizers for rank 2 sub-Riemannian structures
    Barilari, D.
    Chitour, Y.
    Jean, F.
    Prandi, D.
    Sigalotti, M.
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2020, 133 : 118 - 138
  • [17] DUALITY ON GEODESICS OF CARTAN DISTRIBUTIONS AND SUB-RIEMANNIAN PSEUDO-PRODUCT STRUCTURES
    Ishikawa, Goo
    Kitagawa, Yumiko
    Yukuno, Wataru
    DEMONSTRATIO MATHEMATICA, 2015, 48 (02) : 193 - 216
  • [18] LEFT-INVARIANT SUB-RIEMANNIAN ENGEL STRUCTURES: ABNORMAL GEODESICS AND INTEGRABILITY
    Beschastnyi, Ivan
    Medvedev, Alexandr
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2018, 56 (05) : 3524 - 3537
  • [19] Regularity of minimal intrinsic graphs in 3-dimensional sub-Riemannian structures of step 2
    Barbieri, D.
    Citti, G.
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2011, 96 (03): : 279 - 306
  • [20] Mass transportation on sub-Riemannian structures of rank two in dimension four
    Badreddine, Z.
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2019, 36 (03): : 837 - 860