Strong Sard conjecture and regularity of singular minimizing geodesics for analytic sub-Riemannian structures in dimension 3

被引:0
|
作者
A. Belotto da Silva
A. Figalli
A. Parusiński
L. Rifford
机构
[1] Université Aix-Marseille,Institut de Mathématiques de Marseille (UMR CNRS 7373), Centre de Mathématiques et Informatique
[2] Université Paris Cité,IMJ
[3] ETH Zürich,PRG, CNRS 7586, Institut de Mathématiques de Jussieu Paris Rive Gauche
[4] Université Côte d’Azur,Mathematics Department
[5] Université Côte d’Azur,CNRS, Labo. J.
来源
Inventiones mathematicae | 2022年 / 229卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we prove the strong Sard conjecture for sub-Riemannian structures on 3-dimensional analytic manifolds. More precisely, given a totally nonholonomic analytic distribution of rank 2 on a 3-dimensional analytic manifold, we investigate the size of the set of points that can be reached by singular horizontal paths starting from a given point and prove that it has Hausdorff dimension at most 1. In fact, provided that the lengths of the singular curves under consideration are bounded with respect to a given complete Riemannian metric, we demonstrate that such a set is a semianalytic curve. As a consequence, combining our techniques with recent developments on the regularity of sub-Riemannian minimizing geodesics, we prove that minimizing sub-Riemannian geodesics in 3-dimensional analytic manifolds are always of class C1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^1$$\end{document}, and actually they are analytic outside of a finite set of points.
引用
收藏
页码:395 / 448
页数:53
相关论文
共 49 条
  • [1] Strong Sard conjecture and regularity of singular minimizing geodesics for analytic sub-Riemannian structures in dimension 3
    da Silva, A. Belotto
    Figalli, A.
    Parusinski, A.
    Rifford, L.
    INVENTIONES MATHEMATICAE, 2022, 229 (01) : 395 - 448
  • [2] SUBDIFFERENTIALS AND MINIMIZING SARD CONJECTURE IN SUB-RIEMANNIAN GEOMETRY
    Rifford, Ludovic
    JOURNAL DE L ECOLE POLYTECHNIQUE-MATHEMATIQUES, 2023, 10 : 1195 - 1244
  • [3] Regularity results for sub-Riemannian geodesics
    Monti, Roberto
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2014, 49 (1-2) : 549 - 582
  • [4] Regularity results for sub-Riemannian geodesics
    Roberto Monti
    Calculus of Variations and Partial Differential Equations, 2014, 49 : 549 - 582
  • [5] The regularity problem for sub-Riemannian geodesics
    Monti, Roberto
    GEOMETRIC CONTROL THEORY AND SUB-RIEMANNIAN GEOMETRY, 2014, 4 : 313 - 332
  • [6] THE PROBLEM OF GEODESICS IN SINGULAR SUB-RIEMANNIAN GEOMETRY
    PELLETIER, F
    BOUCHE, LV
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1993, 317 (01): : 71 - 76
  • [7] Helical CR structures and sub-Riemannian geodesics
    D'Angelo, John P.
    Tyson, Jeremy T.
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2009, 54 (3-4) : 205 - 221
  • [8] End-point equations and regularity of sub-Riemannian geodesics
    Leonardi, Gian Paolo
    Monti, Roberto
    GEOMETRIC AND FUNCTIONAL ANALYSIS, 2008, 18 (02) : 552 - 582
  • [9] Existence, multiplicity, and regularity for sub-Riemannian geodesics by variational methods
    Giambò, R
    PROCEEDINGS OF THE 41ST IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-4, 2002, : 1926 - 1931
  • [10] Existence, multiplicity, and regularity for sub-Riemannian geodesics by variational methods
    Giambò, R
    Gianoni, F
    Piccione, P
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2002, 40 (06) : 1840 - 1857