The effect of woodland soil translocation on carbon and nitrogen mineralisation processes

被引:0
作者
Marja Hietalahti
G. Cadisch
G. P. Buckley
机构
[1] Imperial College London,Department of Agricultural Sciences
[2] University of Hohenheim,Institute of Plant Production and Agroecology
来源
Plant and Soil | 2005年 / 271卷
关键词
forest; habitat translocation method; loose tipping; net mineralisation; organic matter protection; respiration; soil disturbance;
D O I
暂无
中图分类号
学科分类号
摘要
Two investigations into the translocation of temperate deciduous woodland soil were carried out in Kent, S. E. England, to study the effects on C and N mineralisation. In the field experiment, two translocation methods were compared: (i) placement, moving soil as an intact surface profile and (ii) loose-tipping in which the surface profile was mixed. These were implemented in winter both in situ (under the woodland canopy) and ex situ (soil moved to a receptor site outside woodland). In a second experiment, intact soil cores from the woodland site were subjected to different levels of disturbance in a polythene tunnel environment. Measurements of soil CO2 evolution and N mineralisation in both experiments showed a clear seasonal pattern, strongly influenced by temperature. Over a 7-month period, cumulative net N mineralisation in the field was greater in the woodland controls and placement treatments than loose-tipping treatments. Soil CO2 emissions were also greater in woodland control plots in the winter compared with ex situ treatments. Similarly, in the polythene tunnel environment, CO2 emissions were highest in the undisturbed soil cores, while N mineralisation varied with soil depth but, across the whole profile, was also greater in the controls. We conclude that the mixing of organic rich topsoil with mineral subsoil in clayey soil may have protected the organic residues on the clay-silt surfaces, resulting in overall lower mineralisation rates in the disturbed soil. These results indicate that N mineralisation does not necessarily increase when soil translocation operations are carried out on clayey soils in winter. Placement methods appeared the most likely to conserve soil mineralisation processes close to those in undisturbed woodland soil, but depend greatly on the success of maintaining the soil profile intact. It appears that, on clayey soils, the development of vegetation at the receptor site is more likely to be determined by alterations in the light, soil temperature and moisture regime that will occur in open conditions after woodland translocation than from increased soil N supply.
引用
收藏
页码:91 / 107
页数:16
相关论文
共 128 条
[1]  
Adams M A(1989) studies of nitrogen mineralization and uptake in forest soils; some comments on methodology Soil Biol. Biochem. 21 423-429
[2]  
Polglase P J(1976)Changes and variability in the field layer of a coppiced woodland in Norfolk, England J. Ecol. 64 697-712
[3]  
Attiwill P M(2000)Nitrous oxide emission from soils after incorporating crop residues Soil Use Manage 16 82-87
[4]  
Weston C J(2003)Nitrous oxide emissions following application of residues and fertiliser under zero and conventional tillage Plant Soil 254 361-370
[5]  
Ash J E(1999)Field N Soil Till. Res. 53 29-39
[6]  
Barkham J P(2000)O, CO Soil Till. Res. 53 215-230
[7]  
Baggs E M(1995) and CH Plant Soil 168 585-592
[8]  
Rees R M(1995) fluxes in relation to tillage, compaction and soil quality in Scotland Plant Soil 168 579-584
[9]  
Smith K A(1994)Relationship of soil organic matter dynamics to physical protection and tillage Soil Sci. Soc. Am. J. 58 787-795
[10]  
Vinten A J A(1989)Mechanisms for carbon and nutrient release and retention in beech forest gaps. II. The role of soil microbial biomass Adv. Soil Sci. 10 57-112