Higher Order Melnikov Functions for Studying Limit Cycles of Some Perturbed Elliptic Hamiltonian Vector Fields

被引:0
作者
Rasoul Asheghi
Arefeh Nabavi
机构
[1] Isfahan University of Technology,Department of Mathematical Sciences
来源
Qualitative Theory of Dynamical Systems | 2019年 / 18卷
关键词
Limit cycles; Hamiltonian systems; Melnikov functions; 34C07; 34C23;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study the number of limit cycles in the perturbed Hamiltonian system dH=εF1+ε2F2+ε3F3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$dH=\varepsilon F_1+\varepsilon ^2 F_2+\varepsilon ^3 F_3$$\end{document} with Fi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F_i$$\end{document}, the vector valued homogeneous polynomials of degree i and 4-i\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$4-i$$\end{document} for i=1,2,3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$i=1,2,3$$\end{document}, and small positive parameter ε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon $$\end{document}. The Hamiltonian function has the form H=y2/2+U(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H=y^2/2+U(x)$$\end{document}, where U is a univariate polynomial of degree four without symmetry. We compute higher order Melnikov functions until we obtain reversible perturbations. Then we find the upper bounds for the number of limit cycles that can bifurcate from the periodic orbits of dH=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$dH=0$$\end{document}.
引用
收藏
页码:289 / 313
页数:24
相关论文
共 16 条
[1]  
Françoise JP(1996)Successive derivatives of a first return map, application to the study of quadratic vector fields Ergod. Theory Dyn. Syst. 16 87-96
[2]  
Gavrilov L(2016)Cubic perturbations of elliptic Hamiltonian vector fields of degree three J. Differ. Eq. 260 3963-3990
[3]  
Iliev ID(1994)On saddle-loop bifurcation of limit cycles in perturbations of quadratic Hamiltonian systems J. Differ. Eq. 113 84-105
[4]  
Horozov E(1996)Higher-order Melnikov functions for degenerate cubic Hamiltonians Adv. Differ. Eq. 1 689-708
[5]  
Iliev ID(1999)The number of limit cycles due to polynomial perturbations of the harmonic oscillator Math. Proc. Cambridge Philos. Soc. 127 317-322
[6]  
Iliev ID(1992)High order Melnikov functions and the problem of uniformity in global bifurcations Ann. Math. Pura Appl. 161 181-212
[7]  
Iliev ID(2017)Using Melnikov functions of any order for studying limit cycles J. Math. Anal. Appl. 448 409-420
[8]  
Li B(1995)A geometric proof of the Bautin theorem, connecting the Hilbert 16th problem Am. Math. Soc. Transl. Ser. 2 203-219
[9]  
Zhang Z(2000)The cyclicity of the period annulus of the quadratic Hamiltonian systems with non-Morsean point J. Differ. Eq. 162 199-223
[10]  
Tigan G(2001)Perturbations of non-generic quadratic Hamiltonian vector fields with hyperbolic segment Bull. Sci. Math. 125 109-138