Light–matter coupling in large-area van der Waals superlattices

被引:0
|
作者
Pawan Kumar
Jason Lynch
Baokun Song
Haonan Ling
Francisco Barrera
Kim Kisslinger
Huiqin Zhang
Surendra B. Anantharaman
Jagrit Digani
Haoyue Zhu
Tanushree H. Choudhury
Clifford McAleese
Xiaochen Wang
Ben R. Conran
Oliver Whear
Michael J. Motala
Michael Snure
Christopher Muratore
Joan M. Redwing
Nicholas R. Glavin
Eric A. Stach
Artur R. Davoyan
Deep Jariwala
机构
[1] University of Pennsylvania,Electrical and Systems Engineering
[2] University of Pennsylvania,Materials Science and Engineering
[3] University of California at Los Angeles,Department of Mechanical and Aerospace Engineering
[4] Brookhaven National Laboratory,2D Crystal Consortium
[5] Center for Functional Nanomaterials,Materials Innovation Platform, Materials Research Institute
[6] Pennsylvania State University,Department of Chemical and Materials Engineering
[7] AIXTRON Ltd,undefined
[8] Swavesey,undefined
[9] Air Force Research Laboratory,undefined
[10] Materials and Manufacturing Directorate,undefined
[11] Wright-Patterson AFB,undefined
[12] Air Force Research Laboratory,undefined
[13] Sensors Directorate,undefined
[14] Wright-Patterson AFB,undefined
[15] University of Dayton,undefined
来源
Nature Nanotechnology | 2022年 / 17卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Two-dimensional (2D) crystals have renewed opportunities in design and assembly of artificial lattices without the constraints of epitaxy. However, the lack of thickness control in exfoliated van der Waals (vdW) layers prevents realization of repeat units with high fidelity. Recent availability of uniform, wafer-scale samples permits engineering of both electronic and optical dispersions in stacks of disparate 2D layers with multiple repeating units. Here we present optical dispersion engineering in a superlattice structure comprising alternating layers of 2D excitonic chalcogenides and dielectric insulators. By carefully designing the unit cell parameters, we demonstrate greater than 90% narrow band absorption in less than 4 nm of active layer excitonic absorber medium at room temperature, concurrently with enhanced photoluminescence in square-centimetre samples. These superlattices show evidence of strong light–matter coupling and exciton–polariton formation with geometry-tuneable coupling constants. Our results demonstrate proof of concept structures with engineered optical properties and pave the way for a broad class of scalable, designer optical metamaterials from atomically thin layers.
引用
收藏
页码:182 / 189
页数:7
相关论文
共 50 条
  • [1] Light-matter coupling in large-area van der Waals superlattices
    Kumar, Pawan
    Lynch, Jason
    Song, Baokun
    Ling, Haonan
    Barrera, Francisco
    Kisslinger, Kim
    Zhang, Huiqin
    Anantharaman, Surendra B.
    Digani, Jagrit
    Zhu, Haoyue
    Choudhury, Tanushree H.
    McAleese, Clifford
    Wang, Xiaochen
    Conran, Ben R.
    Whear, Oliver
    Motala, Michael J.
    Snure, Michael
    Muratore, Christopher
    Redwing, Joan M.
    Glavin, Nicholas R.
    Stach, Eric A.
    Davoyan, Artur R.
    Jariwala, Deep
    NATURE NANOTECHNOLOGY, 2022, 17 (02) : 182 - +
  • [2] Large-Area Artificial van der Waals "Mille-Feuille" Superlattices
    Wei, Hao
    Dubois, Simon
    Brunnett, Frederic
    Peiro, Julian
    Godel, Florian
    Carretero, Cecile
    Panciera, Federico
    Collin, Sophie
    Bouamrane, Faycal
    Zatko, Victor
    Galbiati, Marta
    Carre, Etienne
    Patriarche, Gilles
    Petroff, Frederic
    Charlier, Jean-Christophe
    Martin, Marie-Blandine
    Dlubak, Bruno
    Seneor, Pierre
    ADVANCED MATERIALS INTERFACES, 2024, 11 (33):
  • [3] Strong light-matter coupling in van der Waals materials
    Luo, Yuan
    Zhao, Jiaxin
    Fieramosca, Antonio
    Guo, Quanbing
    Kang, Haifeng
    Liu, Xiaoze
    Liew, Timothy C. H.
    Sanvitto, Daniele
    An, Zhiyuan
    Ghosh, Sanjib
    Wang, Ziyu
    Xu, Hongxing
    Xiong, Qihua
    LIGHT-SCIENCE & APPLICATIONS, 2024, 13 (01)
  • [4] Van der Waals superlattices
    Huaying Ren
    Zhong Wan
    Xiangfeng Duan
    National Science Review, 2022, 9 (05) : 14 - 16
  • [5] Van der Waals superlattices
    Ren, Huaying
    Wan, Zhong
    Duan, Xiangfeng
    NATIONAL SCIENCE REVIEW, 2022, 9 (05)
  • [6] Large-Area Epitaxial Film Growth of van der Waals Ferromagnetic Ternary Chalcogenides
    Giri, Anupam
    De, Chandan
    Kumar, Manish
    Pal, Monalisa
    Lee, Hyun Hwi
    Kim, Jun Sung
    Cheong, Sang-Wook
    Jeong, Unyong
    ADVANCED MATERIALS, 2021, 33 (45)
  • [7] Versatile Large-Area Custom-Feature van der Waals Epitaxy of Topological Insulators
    Trivedi, Tanuj
    Roy, Anupam
    Movva, Hema C. P.
    Walker, Emily S.
    Bank, Seth R.
    Neikirk, Dean P.
    Banerjee, Sanjay K.
    ACS NANO, 2017, 11 (07) : 7457 - 7467
  • [8] van der Waals epitaxy of large-area continuous ReS2 films on mica substrate
    Qin, Jing-Kai
    Shao, Wen-Zhu
    Li, Yang
    Xu, Cheng-Yan
    Ren, Dan-Dan
    Song, Xiao-Guo
    Zhen, Liang
    RSC ADVANCES, 2017, 7 (39): : 24188 - 24194
  • [9] Large-Area Single-Layer MoSe2 and Its van der Waals Heterostructures
    Shim, Gi Woong
    Yoo, Kwonjae
    Seo, Seung-Bum
    Shin, Jongwoo
    Jung, Dae Yool
    Kang, Il-Suk
    Ahn, Chi Won
    Cho, Byung Jin
    Choi, Sung-Yool
    ACS NANO, 2014, 8 (07) : 6655 - 6662
  • [10] Heteroepitaxial van der Waals semiconductor superlattices
    Jin, Gangtae
    Lee, Chang-Soo
    Okello, Odongo F. N.
    Lee, Suk-Ho
    Park, Min Yeong
    Cha, Soonyoung
    Seo, Seung-Young
    Moon, Gunho
    Min, Seok Young
    Yang, Dong-Hwan
    Han, Cheolhee
    Ahn, Hyungju
    Lee, Jekwan
    Choi, Hyunyong
    Kim, Jonghwan
    Choi, Si-Young
    Jo, Moon-Ho
    NATURE NANOTECHNOLOGY, 2021, 16 (10) : 1092 - +