A Divisor Problem Attached to Regular Quadratic Forms*

被引:0
作者
Huafeng Liu
机构
[1] Shandong Normal University,School of Mathematics and Statistics
来源
Lithuanian Mathematical Journal | 2019年 / 59卷
关键词
quadratic form; circle method; divisor problem; 11P32; 11P55; 11T23;
D O I
暂无
中图分类号
学科分类号
摘要
Let f(x1, . . . , xs) (s ≥ 3) be a regular quadratic form with integral variables. We study the number of divisors of f(x1, . . . , xs) on average. We establish an asymptotic formula of the sum of these divisors.
引用
收藏
页码:169 / 184
页数:15
相关论文
共 19 条
[1]  
Birch BJ(1321)Forms in many variables Proc. R. Soc. Lond., Ser. A 265 245-263, 1961
[2]  
Calderón C(2000)On divisors of a quadratic form Bol. Soc. Bras. Mat. 31 81-91
[3]  
de Velasco MJ(1995)On the sphere problem Rev. Mat. Iberoamer. 11 417-429
[4]  
Chamizo F(1963)Improvement of asymptotic formulas for the number of lattice points in a region of three dimensions. II Sci. Sin. 12 751-764
[5]  
Iwaniec H(1963)Cubic forms in sixteen variables Proc. R. Soc. Lond., Ser. A 272 285-303
[6]  
Chen J(1985)On the sum of the number of divisors of a quadratic form Dokl. Akad. Nauk Tadzh. SSR 28 371-375
[7]  
Davenport H(1993)On the number of divisors of a quadratic form Proc. Steklov Inst. Math. 200 137-148
[8]  
Gafurov N(2012)Some problems about the ternary quadratic form Acta Arith. 156 101-121
[9]  
Gafurov N(2007)Cubic forms in 14 variables Invent. Math. 170 199-230
[10]  
Guo R(1938)Some results in additive prime number theory Q. J. Math. 9 60-80