Measuring the frequency chirp of extreme-ultraviolet free-electron laser pulses by transient absorption spectroscopy

被引:0
作者
Thomas Ding
Marc Rebholz
Lennart Aufleger
Maximilian Hartmann
Veit Stooß
Alexander Magunia
Paul Birk
Gergana Dimitrova Borisova
David Wachs
Carina da Costa Castanheira
Patrick Rupprecht
Yonghao Mi
Andrew R. Attar
Thomas Gaumnitz
Zhi-Heng Loh
Sebastian Roling
Marco Butz
Helmut Zacharias
Stefan Düsterer
Rolf Treusch
Arvid Eislage
Stefano M. Cavaletto
Christian Ott
Thomas Pfeifer
机构
[1] Max-Planck-Institut für Kernphysik,Department of Chemistry
[2] University of California,Division of Chemistry and Biological Chemistry, and Division of Physics and Applied Physics, School of Physical and Mathematical Sciences
[3] Laboratorium für Physikalische Chemie,Physikalisches Institut
[4] ETH Zürich,undefined
[5] Nanyang Technological University,undefined
[6] Westfälische Wilhelms-Universität Münster,undefined
[7] Deutsches Elektronen-Synchrotron DESY,undefined
来源
Nature Communications | / 12卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
High-intensity ultrashort pulses at extreme ultraviolet (XUV) and x-ray photon energies, delivered by state-of-the-art free-electron lasers (FELs), are revolutionizing the field of ultrafast spectroscopy. For crossing the next frontiers of research, precise, reliable and practical photonic tools for the spectro-temporal characterization of the pulses are becoming steadily more important. Here, we experimentally demonstrate a technique for the direct measurement of the frequency chirp of extreme-ultraviolet free-electron laser pulses based on fundamental nonlinear optics. It is implemented in XUV-only pump-probe transient-absorption geometry and provides in-situ information on the time-energy structure of FEL pulses. Using a rate-equation model for the time-dependent absorbance changes of an ionized neon target, we show how the frequency chirp can be directly extracted and quantified from measured data. Since the method does not rely on an additional external field, we expect a widespread implementation at FELs benefiting multiple science fields by in-situ on-target measurement and optimization of FEL-pulse properties.
引用
收藏
相关论文
共 62 条
[1]  
Ackermann W(2007)Operation of a free-electron laser from the extreme ultraviolet to the water window Nat. Photonics 1 336-342
[2]  
McNeil BWJ(2010)X-ray free-electron lasers Nat. Photonics 4 814-821
[3]  
Thompson NR(2019)10 years of pioneering X-ray science at the free-electron laser FLASH at DESY Phys. Rep. 808 1-74
[4]  
Rossbach J(2018)Roadmap of ultrafast x-ray atomic and molecular physics J. Phys. B: At. Mol. Opt. Phys. 51 032003-561
[5]  
Schneider JR(2019)Coherent soft X-ray pulses from an echo-enabled harmonic generation free-electron laser Nat. Photonics 13 555-36
[6]  
Wurth W(2020)Tunable isolated attosecond X-ray pulses with gigawatt peak power from a free-electron laser Nat. Photonics 14 30-127
[7]  
Young L(2013)Multidimensional attosecond resonant X-ray spectroscopy of molecules: lessons from the optical regime Annu. Rev. Phys. Chem. 64 101-179
[8]  
Rebernik Ribič P(2016)Coherent control with a short-wavelength free-electron laser Nat. Photonics 10 176-528
[9]  
Duris J(2014)Development of experimental techniques for the characterization of ultrashort photon pulses of extreme ultraviolet free-electron lasers Phys. Rev. Accel. Beams 17 120702-220
[10]  
Mukamel S(2009)Single-shot terahertz-field-driven X-ray streak camera Nat. Photonics 3 523-2384