Boosting electrocatalytic nitrate reduction to ammonia via Cu2O/Cu(OH)2 heterostructures promoting electron transfer

被引:0
|
作者
Jing Geng
Sihan Ji
机构
[1] Anhui Jianzhu University,Anhui Province International Research Center on Advanced Building Materials, School of Materials Science and Chemical Engineering
[2] Anhui Jianzhu University,Anhui Province Key Laboratory of Advanced Building Materials
[3] Hefei University,School of Energy Materials and Chemical Engineering
来源
Nano Research | 2024年 / 17卷
关键词
Cu; O/Cu(OH); heterostructures; electron transfer; ammonia synthesis; electrocatalysts; nitrate;
D O I
暂无
中图分类号
学科分类号
摘要
Electrocatalytic nitrate (NO3-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\rm{N}}{{\rm{O}}_3}^ -$$\end{document}) reduction to ammonia (NH3) offers a viable approach for sustainable NH3 production and environmental denitrification. Copper (Cu) possesses a distinctive electronic structure, which can augment the reaction kinetics of NO3-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\rm{N}}{{\rm{O}}_3}^ -$$\end{document} and impede hydrogen evolution reaction (HER), rendering it a promising contender for the electrosynthesis of NH3 from NO3-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\rm{N}}{{\rm{O}}_3}^ -$$\end{document}. Nevertheless, the role of Cu2O in copper-based catalysts still requires further investigation for a more comprehensive understanding. Herein, the Cu2O/Cu(OH)2 heterostructures are successfully fabricated through liquid laser irradiation using CuO nanoparticles as a precursor. Experimental and theoretical researches reveal that Cu2O/Cu(OH)2 heterostructure exhibits enhanced electrocatalytic performance for NO3-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\rm{N}}{{\rm{O}}_3}^ -$$\end{document} to NH3 because Cu(OH)2 promotes electron transfer and reduces the valence state of Cu active site in Cu2O. At −0.6 V (vs. reversible hydrogen electrode (RHE)), the NH3 yield reaches its maximum at 1630.66 ± 29.72 µg·h-1·mgcat-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\rm{\mu g}} \cdot {{\rm{h}}^{ - 1}} \cdot {\rm{m}}{{\rm{g}}_{{\rm{cat}}}}^{ - 1}$$\end{document}, while the maximum of Faraday efficiency (FE) is 76.95% ± 5.51%. This study expands the technical scope of copper-based catalyst preparation and enhances the understanding of the electrocatalytic mechanism of NO3-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\rm{N}}{{\rm{O}}_3}^ -$$\end{document} to NH3.
引用
收藏
页码:4898 / 4907
页数:9
相关论文
共 50 条
  • [1] Boosting electrocatalytic nitrate reduction to ammonia via Cu2O/Cu(OH)2 heterostructures promoting electron transfer
    Geng, Jing
    Ji, Sihan
    NANO RESEARCH, 2024, 17 (06) : 4898 - 4907
  • [2] Electrocatalytic nitrate reduction to ammonia over Cu/Cu2O catalysts with controllable ratios
    Ma, Aijing
    Wu, Xuan
    Li, Xueqian
    Susanti, Yuni Dewi
    Liu, Dan
    Li, Hu
    Kuvarega, Alex T.
    Mamba, Bhekie B.
    Gui, Jianzhou
    APPLIED SURFACE SCIENCE, 2024, 653
  • [3] Tuning mobility of intermediate and electron transfer to enhance electrochemical reduction of nitrate to ammonia on Cu2O/Cu interface
    Fu, Wenyang
    Hu, Zhongzheng
    Zheng, Yang
    Su, Pei
    Zhang, Qizhan
    Jiao, Yongli
    Zhou, Minghua
    CHEMICAL ENGINEERING JOURNAL, 2022, 433
  • [4] Cu/Cu+ Synergetic Effect in Cu2O/Cu/CF Electrocatalysts for Efficient Nitrate Reduction to Ammonia
    Shen, Zhaoran
    Yan, Jiabiao
    Wang, Min
    Xing, Lidan
    Huang, Bingji
    Zhou, Hangyan
    Li, Wenbo
    Chen, Lisong
    Shi, Jianlin
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2023, 11 (25) : 9433 - 9441
  • [5] Enrichment of Active Hydrogen at Amorphous CoO/Cu2O Heterojunction Interfaces Enhances Electrocatalytic Nitrate Reduction to Ammonia
    Liu, Jiahao
    Li, Yufeng
    Jia, Xiaojie
    Shen, Jianhua
    Zhu, Yihua
    Li, Chunzhong
    SMALL, 2025, 21 (01)
  • [6] Pd-dispersed Cu2O/Cu Catalysts for Electrochemical Nitrate Reduction
    Guo, Feng
    Xie, Chenxin
    Zhao, Hui
    Gao, Yang
    Teng, Houkai
    Han, Enshan
    CATALYSIS LETTERS, 2024, 154 (04) : 1782 - 1794
  • [7] Pd-dispersed Cu2O/Cu Catalysts for Electrochemical Nitrate Reduction
    Feng Guo
    Chenxin Xie
    Hui Zhao
    Yang Gao
    Houkai Teng
    Enshan Han
    Catalysis Letters, 2024, 154 : 1782 - 1794
  • [8] Morphology Changes of Cu2O Catalysts During Nitrate Electroreduction to Ammonia
    Anastasiadou, Dimitra
    van Beek, Yvette
    Chen, Wei
    Wissink, Tim
    Parastaev, Alexander
    Hensen, Emiel J. M.
    Costa Figueiredo, Marta
    CHEMCATCHEM, 2023, 15 (10)
  • [9] Synergy in Pd/Cu2O 2 O heteronanostructure boosts the electrochemical conversion of nitrate to ammonia
    Choi, Hyoryung
    Jun, Minki
    Kang, Woojong
    Kim, Taekyung
    Choi, Songa
    Choi, Changhyeok
    Wang, Heryn
    Baik, Hionsuck
    Jung, Yousung
    Jin, Kyoungsuk
    Lee, Kwangyeol
    CHEM CATALYSIS, 2024, 4 (07):
  • [10] Electrocatalytic Reduction of Nitrate to Ammonia by Cu–Sn Alloy Cathode
    Weichun Dan Li
    Cong Gao
    Jiyan Geng
    Libao Liang
    Journal of Water Chemistry and Technology, 2022, 44 : 335 - 343