Action of antimicrobial peptides and cell-penetrating peptides on membrane potential revealed by the single GUV method

被引:22
|
作者
Moghal M.M.R. [1 ,2 ]
Hossain F. [1 ]
Yamazaki M. [1 ,3 ,4 ]
机构
[1] Integrated Bioscience Section, Graduate School of Science and Technology, Shizuoka University, Shizuoka
[2] Department of Pharmacy, Mawlana Bhashani Science and Technology University, Tangail
[3] Nanomaterials Research Division, Research Institute of Electronics, Shizuoka University, 836 Oya, Suruga-ku, Shizuoka
[4] Department of Physics, Faculty of Science, Shizuoka University, Shizuoka
基金
日本学术振兴会;
关键词
Antimicrobial peptides; Artificial cells; Bio-imaging; Cell-penetrating peptides; Membrane potential; Single giant unilamellar vesicles;
D O I
10.1007/s12551-020-00662-z
中图分类号
学科分类号
摘要
Membrane potential plays various key roles in live bacterial and eukaryotic cells. So far, the effects of membrane potential on action of antimicrobial peptides (AMPs) and cell-penetrating peptides (CPPs) have been examined using cells and small lipid vesicles. However, due to the technical drawbacks of these experiments, the effect of membrane potential on the actions of AMPs and CPPs and the elementary processes of interactions of these peptides with cell membranes and vesicle membranes are not well understood. In this short review, we summarize the results of the effect of membrane potential on the action of an AMP, lactoferricin B (LfcinB), and a CPP, transportan 10 (TP10), in vesicle membranes revealed by the single giant unilamellar vesicle (GUV) method. Parts of the actions and their elementary steps of AMPs and CPPs interacting vesicle membranes under membrane potential are clearly revealed using the single GUV method. The experimental methods and their analysis described here can be used to elucidate the effects of membrane potential on various activities of peptides such as AMPs, CPPs, and proteins. Moreover, GUVs with membrane potential are more suitable as a model of cells or artificial cells, as well as GUVs containing small vesicles. © 2020, International Union for Pure and Applied Biophysics (IUPAB) and Springer-Verlag GmbH Germany, part of Springer Nature.
引用
收藏
页码:339 / 348
页数:9
相关论文
共 50 条
  • [41] Biophysical Properties of Membrane-Active Peptides Based on Micelle Modeling: A Case Study of Cell-Penetrating and Antimicrobial Peptides
    Wang, Qian
    Hong, Gongyi
    Johnson, Glenn R.
    Pachter, Ruth
    Cheung, Margaret S.
    JOURNAL OF PHYSICAL CHEMISTRY B, 2010, 114 (43): : 13726 - 13735
  • [42] Antimicrobial Peptides and Cell-Penetrating Peptides: Non-Antibiotic Membrane-Targeting Strategies Against Bacterial Infections
    Huang, Xucheng
    Li, Guoli
    INFECTION AND DRUG RESISTANCE, 2023, 16 : 1203 - 1219
  • [43] Cell dependent cell-penetrating peptides
    Shi, Junfeng
    Schneider, Joel
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2017, 254
  • [44] Interaction of cell-penetrating peptides with giant plasma membrane vesicles
    Pooga, M.
    Saeaelik, P.
    Niinep, A.
    Pae, J.
    Lubenets, D.
    Hansen, M.
    Langel, U.
    JOURNAL OF PEPTIDE SCIENCE, 2010, 16 : 150 - 150
  • [45] Cell-penetrating peptides for drug delivery across membrane barriers
    Foged, Camilla
    Nielsen, Hanne Moerck
    EXPERT OPINION ON DRUG DELIVERY, 2008, 5 (01) : 105 - 117
  • [46] Novel machine learning application for prediction of membrane insertion potential of cell-penetrating peptides
    Damiati, Safa A.
    Alaofi, Ahmed L.
    Dhar, Prajnaparamita
    Alhakamy, Nabil A.
    INTERNATIONAL JOURNAL OF PHARMACEUTICS, 2019, 567
  • [47] How to overcome endosomal entrapment of cell-penetrating peptides to release the therapeutic potential of peptides?
    Nadal-Bufi, Ferran
    Henriques, Sonia Troeira
    PEPTIDE SCIENCE, 2020, 112 (06)
  • [48] Membrane fusion shown by antimicrobial and cell penetrating peptides
    Wadhwani, Parvesh
    Reichert, Johannes
    Buerckl, Jochen
    Ulrich, Anne S.
    BIOPOLYMERS, 2011, 96 (04) : 500 - 501
  • [49] Phosphatidylserines Transduce Cell-Penetrating Peptides
    Cahill, Kevin
    BIOPHYSICAL JOURNAL, 2009, 96 (03) : 663A - 663A
  • [50] Glycosylated Cell-Penetrating Peptides (GCPPs)
    Gallego, Ivan
    Rioboo, Alicia
    Reina, Jose J.
    Diaz, Bernardo
    Canales, Angeles
    Javier Canada, F.
    Guerra-Varela, Jorge
    Sanchez, Laura
    Montenegro, Javier
    CHEMBIOCHEM, 2019, 20 (11) : 1400 - 1409