Multi-Regge limit of the two-loop five-point amplitudes in N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 4 super Yang-Mills and N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 8 supergravity

被引:0
作者
Simon Caron-Huot
Dmitry Chicherin
Johannes Henn
Yang Zhang
Simone Zoia
机构
[1] McGill University,Department of Physics
[2] Max-Planck-Institut für Physik,Interdisciplinary Center for Theoretical Study
[3] Werner-Heisenberg-Institut,undefined
[4] Peng Huanwu Center for Fundamental Theory,undefined
[5] University of Science and Technology of China,undefined
关键词
Scattering Amplitudes; Effective Field Theories; Supersymmetric Gauge Theory;
D O I
10.1007/JHEP10(2020)188
中图分类号
学科分类号
摘要
In previous work, the two-loop five-point amplitudes in N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 4 super Yang-Mills theory and N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 8 supergravity were computed at symbol level. In this paper, we compute the full functional form. The amplitudes are assembled and simplified using the analytic expressions of the two-loop pentagon integrals in the physical scattering region. We provide the explicit functional expressions, and a numerical reference point in the scattering region. We then calculate the multi-Regge limit of both amplitudes. The result is written in terms of an explicit transcendental function basis. For certain non-planar colour structures of the N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 4 super Yang-Mills amplitude, we perform an independent calculation based on the BFKL effective theory. We find perfect agreement. We comment on the analytic properties of the amplitudes.
引用
收藏
相关论文
共 327 条
[1]  
Faddeev LD(1995) = 8 Phys. Lett. B 342 311-undefined
[2]  
Korchemsky GP(2009) 4 Phys. Rev. D 80 241601-undefined
[3]  
Bartels J(2016) = 8 Phys. Rev. Lett. 117 023-undefined
[4]  
Lipatov LN(2011) = 8 JHEP 11 016-undefined
[5]  
Sabio Vera A(2019) = 8 JHEP 08 161602-undefined
[6]  
Caron-Huot S(2020) = 8 Phys. Rev. Lett. 124 047-undefined
[7]  
Dixon LJ(2018) = 8 JHEP 04 005-undefined
[8]  
McLeod A(2020) = 4 JHEP 07 064-undefined
[9]  
von Hippel M(2007) = 8 JHEP 01 121603-undefined
[10]  
Dixon LJ(2017) = 8 Phys. Rev. D 96 012-undefined