Harnack inequalities, Kobayashi distances and holomorphic motions

被引:0
作者
E. M. Chirka
机构
[1] Russian Academy of Sciences,Steklov Mathematical Institute
来源
Proceedings of the Steklov Institute of Mathematics | 2012年 / 279卷
关键词
STEKLOV Institute; Complex Manifold; Quasiconformal Mapping; Harnack Inequality; Complex Banach Space;
D O I
暂无
中图分类号
学科分类号
摘要
We prove some generalizations and analogs of the Harnack inequalities for pluriharmonic, holomorphic and “almost holomorphic” functions. The results are applied to proving smoothness properties of holomorphic motions over almost complex manifolds.
引用
收藏
页码:194 / 206
页数:12
相关论文
共 8 条
[1]  
Hempel J. A.(1979)The Poincaré Metric on the Twice Punctured Plane and the Theorems of Landau and Schottky J. London Math. Soc., Ser. 2 20 435-445
[2]  
Jenkins J. A.(1955)On Explicit Bounds in Schottky’s Theorem Can. J. Math. 7 76-82
[3]  
Lehto O.(1960)On the Existence of Quasiconformal Mappings with Prescribed Complex Dilatation Ann. Acad. Sci. Fenn. A.I 274 24-217
[4]  
Virtanen K. I.(1983)On the Dynamics of Rational Maps Ann. Sci. éc. Norm. Supér., Sér. 4 16 193-310
[5]  
Mãné R.(1974)The Extension of Regular Holomorphic Maps Proc. Am. Math. Soc. 43 306-undefined
[6]  
Sad P.(undefined)undefined undefined undefined undefined-undefined
[7]  
Sullivan D.(undefined)undefined undefined undefined undefined-undefined
[8]  
Royden H. L.(undefined)undefined undefined undefined undefined-undefined