A Note on the Subcritical Two Dimensional Keller-Segel System

被引:0
作者
Jose A. Carrillo
Li Chen
Jian-Guo Liu
Jinhuan Wang
机构
[1] Universitat Autònoma de Barcelona,ICREA and Departament de Matemàtiques
[2] Tsinghua University,Department of Mathematical Sciences
[3] Duke University,Department of Physics and Department of Mathematics
[4] Liaoning University,Department of Mathematics
来源
Acta Applicandae Mathematicae | 2012年 / 119卷
关键词
Chemotaxis; Critical mass; Global existence; Maximal density function; 35K55; 35B33;
D O I
暂无
中图分类号
学科分类号
摘要
The existence of solution for the 2D-Keller-Segel system in the subcritical case, i.e. when the initial mass is less than 8π, is reproved. Instead of using the entropy in the free energy and free energy dissipation, which was used in the proofs (Blanchet et al. in SIAM J. Numer. Anal. 46:691–721, 2008; Electron. J. Differ. Equ. Conf. 44:32, 2006 (electronic)), the potential energy term is fully utilized by adapting Delort’s theory on 2D incompressible Euler equation (Delort in J. Am. Math. Soc. 4:553–386, 1991).
引用
收藏
页码:43 / 55
页数:12
相关论文
共 29 条
  • [1] Blanchet A.(2006)Two-dimensional Keller-Segel model: optimal critical mass and qualitative properties of the solutions Electron. J. Differ. Equ. Conf. 44 32-721
  • [2] Dolbeault J.(2008)Convergence of the mass-transport steepest descent scheme for the subcritical Patlak-Keller-Segel model SIAM J. Numer. Anal. 46 691-1481
  • [3] Perthame B.(2008)Infinite time aggregation for the critical Patlak-Keller-Segel model in ℝ Commun. Pure Appl. Math. 61 1449-104
  • [4] Blanchet A.(1992)Competing symmetries, the logarithmic HLS inequality and Onofri’s inequality on  Geom. Funct. Anal. 2 90-19701
  • [5] Calvez V.(2010)Hardy-Littlewood-Sobolev inequalities via fast diffusion flows Proc. Natl. Acad. Sci. USA 107 19696-553
  • [6] Carrillo J.A.(1991)Existence de nappes de tourbillon en dimension deux J. Am. Math. Soc. 4 386-345
  • [7] Blanchet A.(1987)Concentrations in regularizations for 2D incompressible flow Commun. Pure Appl. Math. 40 301-616
  • [8] Carrillo J.A.(2004)Optimal critical mass in the two dimensional Keller-Segel model in ℝ C.R. Acad. Sci. Paris, Ser. I 339 611-121
  • [9] Masmoudi N.(2009)The two-dimensional Keller-Segel model after blow-up Discrete Contin. Dyn. Syst. 25 109-217
  • [10] Carlen E.(2009)A user’s guide to PDE models for chemotaxis J. Math. Biol. 58 183-628