共 29 条
- [1] Blanchet A.(2006)Two-dimensional Keller-Segel model: optimal critical mass and qualitative properties of the solutions Electron. J. Differ. Equ. Conf. 44 32-721
- [2] Dolbeault J.(2008)Convergence of the mass-transport steepest descent scheme for the subcritical Patlak-Keller-Segel model SIAM J. Numer. Anal. 46 691-1481
- [3] Perthame B.(2008)Infinite time aggregation for the critical Patlak-Keller-Segel model in ℝ Commun. Pure Appl. Math. 61 1449-104
- [4] Blanchet A.(1992)Competing symmetries, the logarithmic HLS inequality and Onofri’s inequality on Geom. Funct. Anal. 2 90-19701
- [5] Calvez V.(2010)Hardy-Littlewood-Sobolev inequalities via fast diffusion flows Proc. Natl. Acad. Sci. USA 107 19696-553
- [6] Carrillo J.A.(1991)Existence de nappes de tourbillon en dimension deux J. Am. Math. Soc. 4 386-345
- [7] Blanchet A.(1987)Concentrations in regularizations for 2D incompressible flow Commun. Pure Appl. Math. 40 301-616
- [8] Carrillo J.A.(2004)Optimal critical mass in the two dimensional Keller-Segel model in ℝ C.R. Acad. Sci. Paris, Ser. I 339 611-121
- [9] Masmoudi N.(2009)The two-dimensional Keller-Segel model after blow-up Discrete Contin. Dyn. Syst. 25 109-217
- [10] Carlen E.(2009)A user’s guide to PDE models for chemotaxis J. Math. Biol. 58 183-628