On Local Convergence of the Method of Alternating Projections

被引:0
作者
Dominikus Noll
Aude Rondepierre
机构
[1] Université de Toulouse,Institut de Mathématiques
[2] INSA Toulouse,Institut de Mathématiques
来源
Foundations of Computational Mathematics | 2016年 / 16卷
关键词
Alternating projections; Local convergence; Subanalytic set; Separable intersection; Tangential intersection; Hölder regularity; Gerchberg–Saxton error reduction; Primary: 65K10; Secondary: 90C30; 32B20; 47H04; 49J52;
D O I
暂无
中图分类号
学科分类号
摘要
The method of alternating projections is a classical tool to solve feasibility problems. Here we prove local convergence of alternating projections between subanalytic sets A,B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A,B$$\end{document} under a mild regularity hypothesis on one of the sets. We show that the speed of convergence is O(k-ρ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {O}}(k^{-\rho })$$\end{document} for some ρ∈(0,∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho \in (0,\infty )$$\end{document}.
引用
收藏
页码:425 / 455
页数:30
相关论文
共 48 条
  • [1] Attouch H(2010)Proximal alternating minimization and projection methods for nonconvex problems: an approach based on the Kurdyka-Łojasiewicz inequality Mathematics of Operations Research 35 438-457
  • [2] Bolte J(1996)On projection algorithms for solving convex feasibility problems SIAM Review 38 367-426
  • [3] Redont P(2002)Phase retrieval, error reduction algorithm, and Fienup variants: a view from convex optimization J. Opt. Soc. Am. Series A 19 1334-1345
  • [4] Soubeyran A(2013)Restricted normal cones and the method of alternating projections: theory Set-Valued and Variational Analysis 21 431-473
  • [5] Bauschke HH(2013)Restricted normal cones and the method of alternating projections: applications Set-Valued and Variational Analysis 21 475-501
  • [6] Borwein JM(2013)On cluster points of alternating projections Serdica Math. Journal 39 355-364
  • [7] Bauschke HH(2014)On the local convergence of the Douglas-Rachford algorithm Archiv der Mathematik 102 589-600
  • [8] Combettes PL(1988)Semianalytic and subanalytic sets IHES Publ. Math. 67 5-42
  • [9] Luke DR(2007)The Łojasiewicz inequality for nonsmooth subanalytic functions with applications to subgradient dynamical systems SIAM J. Opt. 17 1205-1223
  • [10] Bauschke HH(2014)Analysis of the convergence rate for the cyclic projection algorithm applied to basic semialgebraic convex sets SIAM Journal on Optimization 24 498-527