A note on polytopes for scattering amplitudes

被引:0
作者
N. Arkani-Hamed
J. Bourjaily
F. Cachazo
A. Hodges
J. Trnka
机构
[1] Institute for Advanced Study,School of Natural Sciences
[2] Princeton Uniersity,Department of Physics
[3] Perimeter Institute for Theoretical Physics,Wadham College
[4] University of Oxford,undefined
来源
Journal of High Energy Physics | / 2012卷
关键词
Scattering Amplitudes; Duality in Gauge Field Theories;
D O I
暂无
中图分类号
学科分类号
摘要
In this note we continue the exploration of the polytope picture for scattering amplitudes, where amplitudes are associated with the volumes of polytopes in generalized momentum-twistor spaces. After a quick warm-up example illustrating the essential ideas with the elementary geometry of polygons in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathbb{C}{\mathbb{P}^{{2}}} $\end{document}, we interpret the 1-loop MHV integrand as the volume of a polytope in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathbb{C}{\mathbb{P}^{{3}}} $\end{document} × \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathbb{C}{\mathbb{P}^{{3}}} $\end{document}, which can be thought of as the space obtained by taking the geometric dual of the Wilson loop in each \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathbb{C}{\mathbb{P}^{{3}}} $\end{document} of the product. We then review the polytope picture for the NMHV tree amplitude and give it a more direct and intrinsic definition as the geometric dual of a canonical “square” of the Wilson-Loop polygon, living in a certain extension of momentum-twistor space into \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathbb{C}{\mathbb{P}^{{4}}} $\end{document}. In both cases, one natural class of triangulations of the polytope produces the BCFW/CSW representations of the amplitudes; another class of triangulations leads to a striking new form, which is both remarkably simple as well as manifestly cyclic and local.
引用
收藏
相关论文
共 52 条
[1]  
Britto R(2005)New recursion relations for tree amplitudes of gluons Nucl. Phys. B 715 499-undefined
[2]  
Cachazo F(2005)Direct proof of tree-level recursion relation in Yang-Mills theory Phys. Rev. Lett. 94 181602-undefined
[3]  
Feng B(2011)The All-Loop Integrand For Scattering Amplitudes in Planar N = 4 SYM JHEP 01 041-undefined
[4]  
Britto R(2009)Yangian symmetry of scattering amplitudes in N = 4 super Yang-Mills theory JHEP 05 046-undefined
[5]  
Cachazo F(2010)A Duality For The S Matrix JHEP 03 020-undefined
[6]  
Feng B(2010)The Complete Planar S-matrix of N = 4 SYM as a Wilson Loop in Twistor Space JHEP 12 018-undefined
[7]  
Witten E(2011)Notes on the scattering amplitude/Wilson loop duality JHEP 07 058-undefined
[8]  
Arkani-Hamed N(2007)Gluon scattering amplitudes at strong coupling JHEP 06 064-undefined
[9]  
Bourjaily JL(2007)Magic identities for conformal four-point integrals JHEP 01 064-undefined
[10]  
Cachazo F(2008)Fermionic T-duality, Dual Superconformal Symmetry and the Amplitude/Wilson Loop Connection JHEP 09 062-undefined