The Klein–Gordon–Zakharov equations with the positive fractional power terms and their exact solutions

被引:0
作者
JINLIANG ZHANG
WUQIANG HU
YU MA
机构
[1] Henan University of Science and Technology,School of Mathematics and Statistics
来源
Pramana | 2016年 / 87卷
关键词
Klein–Gordon–Zakharov equation with the positive fractional power terms; sub-ordinary differential equations method; exact solution; constraint condition.; 02.30.Jr; 5.45.Yv;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, the famous Klein–Gordon–Zakharov (KGZ) equations are first generalized, and the new special types of KGZ equations with the positive fractional power terms (gKGZE) are presented. In order to derive exact solutions of the new special gKGZE, subsidiary higher-order ordinary differential equations (sub-ODEs) with the positive fractional power terms are introduced, and with the aid of the sub-ODE, exact solutions of four special types of the gKGZE are derived, which are the bell-type solitary wave solution, the algebraic solitary wave solution, the kink-type solitary wave solution and the sinusoidal travelling wave solution, provided that the coefficients of gKGZE satisfy certain constraint conditions.
引用
收藏
相关论文
共 58 条
[1]  
Zakharov VE(1972)undefined Sov. Phys. JETP 35 908-undefined
[2]  
Zhang JL(2003)undefined Commun. Theor. Phys. 40 129-undefined
[3]  
Wang ML(2006)undefined Acta Math. Appl. Sinica 29 1139-undefined
[4]  
Cheng DM(2008)undefined Comput. Math. Appl. 56 1441-undefined
[5]  
Fang ZD(2010)undefined Appl. Math. Comput. 217 4186-undefined
[6]  
Chen HL(2013)undefined Pramana – J. Phys. 80 41-undefined
[7]  
Xian SQ(2004)undefined Phys. Lett. A 323 415-undefined
[8]  
Shang YD(2010)undefined Commun. Math. Res. 26(2) 97-undefined
[9]  
Huang Y(2005)undefined J. Math. Anal. Appl. 307 219-undefined
[10]  
Yuan WJ(2009)undefined J. Diff. Eq. 246 4097-undefined