Higher order variations of constant mean curvature surfaces
被引:0
|
作者:
Miyuki Koiso
论文数: 0引用数: 0
h-index: 0
机构:Kyushu University,Institute of Mathematics for Industry
Miyuki Koiso
Bennett Palmer
论文数: 0引用数: 0
h-index: 0
机构:Kyushu University,Institute of Mathematics for Industry
Bennett Palmer
机构:
[1] Kyushu University,Institute of Mathematics for Industry
[2] Idaho State University,Department of Mathematics
来源:
Calculus of Variations and Partial Differential Equations
|
2017年
/
56卷
关键词:
53C42;
49Q10;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
We study the third and fourth variation of area for a compact domain in a constant mean curvature surface when there is a Killing field on R3\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mathbf{R}^3$$\end{document} whose normal component vanishes on the boundary. Examples are given to show that, in the presence of a zero eigenvalue, the non negativity of the second variation has no implications for the local area minimization of the surface.
机构:
Univ Estado Rio De Janeiro, Inst Matemat & Estat, Rio De Janeiro, RJ, BrazilUniv Estado Rio De Janeiro, Inst Matemat & Estat, Rio De Janeiro, RJ, Brazil
Damasceno, Leonardo
Elbert, Maria Fernanda
论文数: 0引用数: 0
h-index: 0
机构:
Univ Fed Rio De Janeiro, Inst Matemat, Rio De Janeiro, RJ, BrazilUniv Estado Rio De Janeiro, Inst Matemat & Estat, Rio De Janeiro, RJ, Brazil