Higher order variations of constant mean curvature surfaces

被引:0
|
作者
Miyuki Koiso
Bennett Palmer
机构
[1] Kyushu University,Institute of Mathematics for Industry
[2] Idaho State University,Department of Mathematics
来源
Calculus of Variations and Partial Differential Equations | 2017年 / 56卷
关键词
53C42; 49Q10;
D O I
暂无
中图分类号
学科分类号
摘要
We study the third and fourth variation of area for a compact domain in a constant mean curvature surface when there is a Killing field on R3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf{R}^3$$\end{document} whose normal component vanishes on the boundary. Examples are given to show that, in the presence of a zero eigenvalue, the non negativity of the second variation has no implications for the local area minimization of the surface.
引用
收藏
相关论文
共 50 条