Volume Computation for Polytopes and Partition Functions for Classical Root Systems

被引:0
|
作者
M. Welleda Baldoni
Matthias Beck
Charles Cochet
Michele Vergne
机构
[1] Departimento di Matematica,
[2] University of Rome Tor Vergata,undefined
[3] via della Ricerca Scientifica,undefined
[4] 00133 Roma,undefined
[5] Department of Mathematics,undefined
[6] San Francisco State University,undefined
[7] San Francisco,undefined
[8] CA 94312,undefined
[9] U.F.R. de Mathematiques,undefined
[10] case 7012,undefined
[11] Universite Paris 7,undefined
[12] 2 place Jussieu,undefined
[13] 75251 Paris Cedex 05,undefined
[14] Centre de Mathematiques,undefined
[15] Ecole Polytechnique,undefined
[16] 91128 Palaiseau Cedex,undefined
来源
关键词
Rational Function; Root System; Partition Function; Computational Mathematic; Efficient Computation;
D O I
暂无
中图分类号
学科分类号
摘要
This paper presents an algorithm to compute the value of the inverse Laplace transforms of rational functions with poles on arrangements of hyperplanes. As an application, we present an efficient computation of the partition function for classical root systems.
引用
收藏
页码:551 / 595
页数:44
相关论文
共 50 条
  • [1] Volume computation for polytopes and partition functions for classical root systems
    Baldoni, MW
    Beck, M
    Cochet, C
    Vergne, M
    DISCRETE & COMPUTATIONAL GEOMETRY, 2006, 35 (04) : 551 - 595
  • [2] Partition functions for partly classical systems
    Bright Wilson, E
    JOURNAL OF CHEMICAL PHYSICS, 1939, 7 (10): : 948 - 950
  • [3] On asymptotic partition functions for root systems
    Takakura, Tatsuru
    TORIC TOPOLOGY, 2008, 460 : 339 - 348
  • [4] On volume functions of special flow polytopes associated to the root system of type A
    Negishi, Takayuki
    Sugiyama, Yuki
    Takakura, Tatsuru
    ELECTRONIC JOURNAL OF COMBINATORICS, 2020, 27 (04): : 1 - 14
  • [5] Root Polytopes of Crystallographic Root Systems
    Marietti, Mario
    COMBINATORIAL METHODS IN TOPOLOGY AND ALGEBRA, 2015, 12 : 85 - 89
  • [6] Exact volume computation for polytopes:: A practical study
    Büeler, B
    Enge, A
    Fukuda, K
    POLYTOPES - COMBINATORICS AND COMPUTATION, 2000, 29 : 131 - 154
  • [7] Root polytopes, parking functions, and the HOMFLY polynomial
    Kalman, Tamas
    Murakami, Hitoshi
    QUANTUM TOPOLOGY, 2017, 8 (02) : 205 - 248
  • [8] The partition functions of classical systems in the Gaussian equivalent representation of functional integrals
    Efimov, GV
    Nogovitsin, EA
    PHYSICA A, 1996, 234 (1-2): : 506 - 522
  • [9] Regular lattice polytopes and root systems
    Montagard, Pierre-Louis
    Ressayre, Nicolas
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2009, 41 : 227 - 241
  • [10] EFFECTIVE CLASSICAL PARTITION-FUNCTIONS
    FEYNMAN, RP
    KLEINERT, H
    PHYSICAL REVIEW A, 1986, 34 (06): : 5080 - 5084