Defect-related visible luminescence of ZnO nanorods annealed in oxygen ambient

被引:13
作者
Cai J. [1 ]
Xu J. [1 ]
Zhang X. [1 ]
Niu X. [1 ]
Xing T. [1 ]
Ji T. [2 ]
Li L. [1 ]
机构
[1] Key Laboratory of Display Materials and Photoelectric Devices of Education Ministry of China, Key Laboratory for Optoelectronic Materials and Devices, Insitute of Material Physics, Tianjin University of Technology
[2] Tianjin Xinhua Staff and Workers University
来源
Li, L. (lilan@tjut.edu.cn) | 2012年 / Springer Verlag卷 / 08期
基金
中国国家自然科学基金;
关键词
Oxygen vacancies;
D O I
10.1007/s11801-012-1042-2
中图分类号
学科分类号
摘要
ZnO nanorods prepared by a solution-phase method are annealed at different temperatures in oxygen ambient. The luminescence properties of the samples are investigated. In the same excitation condition, the photoluminescence (PL) spectra of all samples show an ultraviolet (UV) emission and a broad strong visible emission band. The asymmetric visible emission band of annealed samples has a red-shift as the annealing temperature increasing from 200 °C to 600 °C and it can be deconvoluted into two subband emissions centered at 535 nm (green emission) and 611 nm (orange-red emission) by Gaussian-fitting analysis. Analyses of PL excitation (PLE) spectra and PL spectra at different excitation wavelengths reveal that the green emission and the orange-red emission have a uniform initial state, which can be attributed to the electron transition from Zn interstitial (Zn i) to oxygen vacancy (V o) and oxygen interstitial (O i), respectively. © 2012 Tianjin University of Technology and Springer-Verlag Berlin Heidelberg.
引用
收藏
页码:4 / 8
页数:4
相关论文
共 28 条
  • [1] Zeng H.B., Xu X.J., Bando Y., Gautam U., Zhai T.Y., Fang X.S., Liu B.D., Golberg D., Adv. Funct. Mater., 19, (2009)
  • [2] Li X.-p., Zhang B.-l., Shen R.-s., Zhang Y.-t., Dong X., Xia X.-c., Journal of Optoelectronics Laser, 20, (2009)
  • [3] Zhuang J.Y., Li L., Zhang X.S., Xu J.P., Wei J., Optoelectronics Letters, 5, (2009)
  • [4] Yang Y.H., Chen X.Y., Feng Y., Yang G.W., Nano Lett., 7, (2007)
  • [5] Wang N.W., Yang Y.H., Yang G.W., J. Phys. Chem. C, 113, (2009)
  • [6] Look D.C., Falow G.C., Reunchan P., Limpijumnong S., Zhang S.B., Nordlund K., Phys. Rev. Lett., 95, (2005)
  • [7] Tuomisto F., Ranki V., Saarinen K., Phys. Rev. Lett., 91, (2003)
  • [8] Zhang J.Y., Li P.J., Sun H., Shen X., Deng T.S., Zhu K.T., Zhang Q.F., Wu J.L., Appl. Phys. Lett., 93, (2008)
  • [9] Lee S., Jeong S., Kim D., Park B., Moon J., Superlattices Microstruct., 42, (2007)
  • [10] Bi D.Q., Wu F., Yue W.J., Guo Y., Shen W., Peng R.X., Wu H., Wang X.K., Wang M.T., J. Phys. Chem. C, 114, (2010)