Relation Between Solutions and Initial Values for Double-Nonlinear Diffusion Equation

被引:0
|
作者
Liwei Deng
Liangwei Wang
Min Li
Jingxue Yin
机构
[1] Chongqing Three Gorges University,College of Mathematics and Statistics
[2] South China Normal University,School of Mathematical sciences
关键词
Equivalence relation; Asymptotic behavior; -limit set; Double-nonlinear diffusion equation; 35B40; 35K55;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we consider the Cauchy problem of the double-nonlinear diffusion equation. We establish the propagation speed estimates and space-time decay estimates for the solutions and study the equivalent relation between the solutions and the initial values. As an application of this relationship, we prove two different asymptotic behaviors for the solutions in the last of this paper.
引用
收藏
页码:939 / 952
页数:13
相关论文
共 50 条
  • [31] Exact solutions for a diffusion equation with a nonlinear external force
    Zola, R. S.
    Lenzi, M. K.
    Evangelista, L. R.
    Lenzi, E. K.
    Lucena, L. S.
    da Silva, L. R.
    PHYSICS LETTERS A, 2008, 372 (14) : 2359 - 2363
  • [32] SUPERPOSITION PRINCIPLE AND EXACT SOLUTIONS OF A NONLINEAR DIFFUSION EQUATION
    Zhuravlev, V. M.
    THEORETICAL AND MATHEMATICAL PHYSICS, 2015, 183 (01) : 478 - 490
  • [33] Analytical Solutions for a Nonlinear Reaction-diffusion Equation
    Curilef, Sergio
    11TH INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2013, PTS 1 AND 2 (ICNAAM 2013), 2013, 1558 : 1771 - 1774
  • [34] Exact solutions of a nonlinear diffusion-convection equation
    Vanaja, V.
    PHYSICA SCRIPTA, 2009, 80 (04)
  • [35] Exact Solutions of a Nonlinear Diffusion Equation with Absorption and Production
    Robert Conte
    Journal of Nonlinear Mathematical Physics, 2021, 28 : 171 - 181
  • [36] ASYMPTOTIC-BEHAVIOR OF SOLUTIONS OF A NONLINEAR DIFFUSION EQUATION
    VANDUYN, CJ
    PELETIER, LA
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1977, 65 (04) : 363 - 377
  • [37] Nonlinear diffusion equation, Tsallis formalism and exact solutions
    Assis, PC
    da Silva, LR
    Lenzi, EK
    Malacarne, LC
    Mendes, RS
    JOURNAL OF MATHEMATICAL PHYSICS, 2005, 46 (12)
  • [38] Analytical solutions for a nonlinear diffusion equation with convection and reaction
    Valenzuela, C.
    del Pino, L. A.
    Curilef, S.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2014, 416 : 439 - 451
  • [39] Existence of solutions to the slow diffusion equation with a nonlinear source
    Sato, Ryuichi
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2020, 484 (02)
  • [40] Analytical solutions to a nonlinear diffusion-advection equation
    Pudasaini, Shiva P.
    Hajra, Sayonita Ghosh
    Kandel, Santosh
    Khattri, Khim B.
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2018, 69 (06):