Error bounds for linear complementarity problems of BπR\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B_{\pi }^R$$\end{document}-matrices

被引:0
作者
Héctor Orera
Juan Manuel Peña
机构
[1] Universidad de Zaragoza,Departamento de Matemática Aplicada
[2] Universidad de Zaragoza,Departamento de Matemática Aplicada/IUMA
关键词
Error bounds; Linear complementarity problems; Norm bounds for the inverse; -matrices; 90C33; 90C31; 65G50; 15A48;
D O I
10.1007/s40314-021-01491-w
中图分类号
学科分类号
摘要
It is proved that any BπR\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B_{\pi }^R$$\end{document}-matrix has positive determinant. For π>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\pi >0}$$\end{document}, norm bounds for the inverses of BπR\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B_{\pi }^R$$\end{document}-matrices and error bounds for linear complementarity problems associated with BπR\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B_{\pi }^R$$\end{document}-matrices are provided. In this last case, the bounds are simpler than previous bounds and also have the advantage that they can be used without previously knowing whether we have a BπR\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B_{\pi }^R$$\end{document}-matrix. Some numerical examples show that these new bounds can be considerably sharper than previous ones.
引用
收藏
相关论文
共 40 条
  • [1] Chen X(2006)Computation of error bounds for P-matrix linear complementarity problems Math Program 106 513-525
  • [2] Xiang S(2015)Error bounds for linear complementarity problems of Numer Algorithms 70 341-356
  • [3] Chen T(2016)-matrices Calcolo 53 647-657
  • [4] Li W(2019)Error bounds to linear complementarity problem of QN-matrices Numer Math Theory Methods Appl 12 1191-1212
  • [5] Wu X(2009)Notes on new error bounds for linear complementarity problems of Nekrasov matrices, Appl Math Lett 22 1071-1075
  • [6] Vong S(2012)-Nekrasov matrices and Appl Math Lett 25 1379-1383
  • [7] Dai P-F(2014)-matrices Numer Algorithms 67 655-667
  • [8] Li J-C(2017)Error bounds for linear complementarity problems for B-matrices Calcolo 54 813-822
  • [9] Li Y-T(2019)Error bounds for linear complementarity problems of Numer Algorithms 80 521-532
  • [10] Zhang C-Y(2014)-matrices J Math Sci 199 432-437