On a Schrödinger system arizing in nonlinear optics

被引:0
作者
Filipe Oliveira
Ademir Pastor
机构
[1] Universidade de Lisboa,Mathematics Department, CEMAPRE, ISEG
[2] IMECC-UNICAMP,undefined
来源
Analysis and Mathematical Physics | 2021年 / 11卷
关键词
Nonlinear Schrödinger systems; Blow-up; Ground states; Orbital stability; 35Q60; 35Q41; 35Q51; 35C07;
D O I
暂无
中图分类号
学科分类号
摘要
We study the nonlinear Schrödinger system iut+Δu-u+19|u|2+2|w|2u+13u¯2w=0,iσwt+Δw-μw+(9|w|2+2|u|2)w+19u3=0,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \left\{ \begin{array}{lllll} \displaystyle iu_t+\Delta u-u+\left( \frac{1}{9}|u|^2+2|w|^2\right) u+\frac{1}{3}{\overline{u}}^2w=0,\\ i\displaystyle \sigma w_t+\Delta w-\mu w+(9|w|^2+2|u|^2)w+\frac{1}{9}u^3=0, \end{array}\right. \end{aligned}$$\end{document}for (x,t)∈Rn×R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(x,t)\in {\mathbb {R}}^n\times {\mathbb {R}}$$\end{document}, 1≤n≤3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1\le n\le 3$$\end{document} and σ,μ>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma ,\mu >0$$\end{document}. This system models the interaction between an optical beam and its third harmonic in a material with Kerr-type nonlinear response. We prove the existence of ground state solutions, analyse its stability, and establish local and global well-posedness results as well as several criteria for blow-up.
引用
收藏
相关论文
共 23 条
[1]  
Angulo J(2009)Stability of periodic optical solitons for a nonlinear Schrödinger system Proc. R. Soc. Edinb. 139A 927-959
[2]  
Pastor A(2002)Necessary conditions and sufficient conditions for global existence in the nonlinear Schrödinger equation Adv. Math. Sci. Appl. 12 817-827
[3]  
Bégout P(1997)Solitons due to second harmonic generation Phys. Lett. A 197 407-412
[4]  
Buryak AV(1990)Stability theory of solitary waves in the presence of symmetry II J. Funct. Anal. 94 308-348
[5]  
Kivshar YS(1998)Bright and dark spatial solitons in non-Kerr media Opt. Quantum Eletron. 30 571-614
[6]  
Grillakis M(1984)The concentration-compactness principle in the calculus of variations, Part 1 Ann. Inst. H. Poincaré 1 109-145
[7]  
Shatah M(2003)Spatial optical solitons supported by mutual focusing Opt. Lett. 28 1457-1459
[8]  
Strauss W(1997)Modification of solitary waves by third-harmonic generation Opt. Lett. 22 1385-1387
[9]  
Kivshar YS(1998)Bright and dark solitary waves in the presence of the third-harmonic generation J. Opt. Soc. Am. B 15 1488-1496
[10]  
Lions PL(1977)Existence of solitary waves in higher dimensions Commun. Math. Phys. 55 149-162