Decoupled multicomponent potential theory of adsorption of gas mixtures

被引:0
作者
Raphaël Gervais Lavoie
Jean Hamelin
Pierre Bénard
机构
[1] Université du Québec à Trois-Rivières,Institut de recherche sur l’hydrogène
[2] Université du Québec à Trois-Rivières,Département de chimie, biochimie et physique
来源
SN Applied Sciences | 2020年 / 2卷
关键词
Adsorption; Mixture adsorption; Multicomponent adsorption; Potential theory of adsorption; MPTA; Density functional theory;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we present a new version of the multicomponent potential theory of adsorption model. The proposed modification makes a clear distinction between adsorbent dependent parameters from adsorbate dependent ones. This leads to a better understanding of the physical significance of the parameters. The interdependence between pure isotherms is eliminated, which means that each component can be individually finely adjusted. This new approach was tested against 14 datasets for a total of 510 experimental mixture adsorption data of CH4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_4$$\end{document}, CO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_2$$\end{document}, N2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_2$$\end{document}, H2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_2$$\end{document}, O2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_2$$\end{document}, H2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_2$$\end{document}S, C2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_2$$\end{document}H6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_6$$\end{document}, C3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_3$$\end{document}H6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_6$$\end{document}, and C3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_3$$\end{document}H8\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_8$$\end{document} on activated carbons, MOF, and zeolites. A slight improvement of 4.67% on excess adsorption predictions was found, leading to an overall average error of 6.97% for total excess adsorption and 15.30% for combined mixtures and components excess adsorption predictions.
引用
收藏
相关论文
共 110 条
  • [1] Sudibandriyo M(2003)Adsorption of methane, nitrogen, carbon dioxide, and their binary mixtures on dry activated carbon at 318.2 K and pressures up to 13.6 MPa Langmuir 19 5323-undefined
  • [2] Pan Z(1999)High pressure adsorption data of methane, nitrogen, carbon dioxide and their binary and ternary mixtures on activated carbon Adsorption 5 215-undefined
  • [3] Fitzgerald JE(2012)Pure and binary adsorption of CO2, H2, and N2 on activated carbon Adsorption 18 49-undefined
  • [4] Robinson RL(2004)Adsorption equilibrium of binary methane/ethane mixtures in BPL activated carbon: isotherms and calorimetric heats of adsorption Langmuir 20 6668-undefined
  • [5] Gasem KA(2018)Experimental benchmark data of CH4, CO2 and N2 binary and ternary mixtures adsorption on MOF-5 Sep Purif Technol 197 228-undefined
  • [6] Dreisbach F(2018)Hydrogen separation by adsorption: experiments and modelling of H2–N2–CO2 and H2–CH4–CO2 mixtures adsorption on CuBTC and MOF-5 Microporous Mesoporous Mater 271 175-undefined
  • [7] Staudt R(2003)Propane–propylene binary adsorption on zeolite 4A Adsorption 9 321-undefined
  • [8] Keller JU(1996)Measurement and analysis of oxygen/nitrogen/5A-zeolite adsorption equilibria for air separation Gas Sep Purif 10 149-undefined
  • [9] Schell J(2014)Pure and binary adsorption equilibria of methane and nitrogen on zeolite 5A J Chem Eng Data 59 626-undefined
  • [10] Casas N(2015)Experimental investigation and thermodynamic modeling of CH4/N2 adsorption on zeolite 13X J Chem Eng Data 60 683-undefined