Efficient Frameworks for EEG Epileptic Seizure Detection and Prediction

被引:0
作者
Emara H.M. [1 ]
Elwekeil M. [1 ]
Taha T.E. [1 ]
El-Fishawy A.S. [1 ]
El-Rabaie E.-S.M. [1 ]
El-Shafai W. [1 ,2 ]
El Banby G.M. [3 ]
Alotaiby T. [4 ]
Alshebeili S.A. [5 ,6 ]
Abd El-Samie F.E. [1 ,7 ]
机构
[1] Department of Electronics and Electrical Communications Engineering, Faculty of Electronic Engineering, Menoufia University, Menouf
[2] Security Engineering Laboratory, Department of Computer Science, Prince Sultan University, Riyadh
[3] Department of Industrial Electronics and Control Engineering, Faculty of Electronic Engineering, Menoufia University, Menouf
[4] KACST, Riyadh
[5] Electrical Engineering Department, KACST-TIC in Radio Frequency and Photonics for the e-Society (RFTONICS), King Saud University, Riyadh
[6] Department of Electrical Engineering, King Saud University, Riyadh
[7] Department of Information Technology, College of Computer and Information Sciences, Princess Nourah Bint Abdulrahman University, Riyadh
来源
Annals of Data Science | 2022年 / 9卷 / 02期
关键词
EEG; Epilepsy; Seizure detection; Seizure prediction; SIFT;
D O I
10.1007/s40745-020-00308-7
中图分类号
学科分类号
摘要
Seizure detection and prediction are a very hot topics in medical signal processing due to their importance in automatic medical diagnosis. This paper presents three efficient frameworks for applications related to electroencephalogram (EEG) signal processing. The first one is an automatic seizure detection framework based on the utilization of scale-invariant feature transform (SIFT) as an extraction tool. The second one depends on the utilization of the fast Fourier transform (FFT) and an artificial neural network for epileptic seizure prediction. Finally, an automated patient-specific framework for channel selection and seizure prediction is presented based on FFT. The simulation results show the success of the proposed frameworks for automated medical diagnosis. © 2021, Springer-Verlag GmbH Germany, part of Springer Nature.
引用
收藏
页码:393 / 428
页数:35
相关论文
共 50 条
[41]   Epileptic seizure detection in EEG using improved entropy [J].
Gini, Arumai Thangam Phareson ;
Queen, Manuel Packiaselvam Flower .
INTERNATIONAL JOURNAL OF BIOMEDICAL ENGINEERING AND TECHNOLOGY, 2020, 33 (04) :325-345
[42]   Machine Learning Algorithm for Epileptic Seizure Prediction from Scalp EEG Records [J].
Aviles, Esteban ;
Britto, Frank ;
Villaseca, David ;
Zegarra, Carlos ;
Reyes, Francis .
INTERNATIONAL CONFERENCE ON BIOMEDICAL AND HEALTH INFORMATICS 2022, ICBHI 2022, 2024, 108 :51-59
[43]   Improved epileptic seizure detection combining dynamic feature normalization with EEG novelty detection [J].
J. G. Bogaarts ;
D. M. W. Hilkman ;
E. D. Gommer ;
V. H. J. M. van Kranen-Mastenbroek ;
J. P. H. Reulen .
Medical & Biological Engineering & Computing, 2016, 54 :1883-1892
[44]   Improved epileptic seizure detection combining dynamic feature normalization with EEG novelty detection [J].
Bogaarts, J. G. ;
Hilkman, D. M. W. ;
Gommer, E. D. ;
van Kranen-Mastenbroek, V. H. J. M. ;
Reulen, J. P. H. .
MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 2016, 54 (12) :1883-1892
[45]   Heterogeneous Recurrence Analysis of Imaged-EEG for Spatio-Temporal Epileptic Seizure Detection [J].
Shayeste, Haniye ;
Asl, Babak Mohammadzadeh .
IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2023, 27 (01) :351-362
[46]   Epileptic Seizure Detection [J].
Nayak, K. P. ;
Niranjan, U. C. .
4TH KUALA LUMPUR INTERNATIONAL CONFERENCE ON BIOMEDICAL ENGINEERING 2008, VOLS 1 AND 2, 2008, 21 (1-2) :191-194
[47]   Research progress of epileptic seizure prediction methods based on EEG [J].
Wang, Zhongpeng ;
Song, Xiaoxin ;
Chen, Long ;
Nan, Jinxiang ;
Sun, Yulin ;
Pang, Meijun ;
Zhang, Kuo ;
Liu, Xiuyun ;
Ming, Dong .
COGNITIVE NEURODYNAMICS, 2024, 18 (5) :2731-2750
[48]   Epileptic Seizure Prediction Using Spatiotemporal Feature Fusion on EEG [J].
Ji, Dezan ;
He, Landi ;
Dong, Xingchen ;
Li, Haotian ;
Zhong, Xiangwen ;
Liu, Guoyang ;
Zhou, Weidong .
INTERNATIONAL JOURNAL OF NEURAL SYSTEMS, 2024, 34 (08)
[49]   A Generative Model to Synthesize EEG Data for Epileptic Seizure Prediction [J].
Rasheed, Khansa ;
Qadir, Junaid ;
O'Brien, Terence J. ;
Kuhlmann, Levin ;
Razi, Adeel .
IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2021, 29 :2322-2332
[50]   Epileptic Seizure Prediction from EEG Signals Using DenseNet [J].
Jana, Ranjan ;
Bhattacharyya, Siddhartha ;
Das, Swagatam .
2019 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (IEEE SSCI 2019), 2019, :604-609