Efficient Frameworks for EEG Epileptic Seizure Detection and Prediction

被引:0
作者
Emara H.M. [1 ]
Elwekeil M. [1 ]
Taha T.E. [1 ]
El-Fishawy A.S. [1 ]
El-Rabaie E.-S.M. [1 ]
El-Shafai W. [1 ,2 ]
El Banby G.M. [3 ]
Alotaiby T. [4 ]
Alshebeili S.A. [5 ,6 ]
Abd El-Samie F.E. [1 ,7 ]
机构
[1] Department of Electronics and Electrical Communications Engineering, Faculty of Electronic Engineering, Menoufia University, Menouf
[2] Security Engineering Laboratory, Department of Computer Science, Prince Sultan University, Riyadh
[3] Department of Industrial Electronics and Control Engineering, Faculty of Electronic Engineering, Menoufia University, Menouf
[4] KACST, Riyadh
[5] Electrical Engineering Department, KACST-TIC in Radio Frequency and Photonics for the e-Society (RFTONICS), King Saud University, Riyadh
[6] Department of Electrical Engineering, King Saud University, Riyadh
[7] Department of Information Technology, College of Computer and Information Sciences, Princess Nourah Bint Abdulrahman University, Riyadh
来源
Annals of Data Science | 2022年 / 9卷 / 02期
关键词
EEG; Epilepsy; Seizure detection; Seizure prediction; SIFT;
D O I
10.1007/s40745-020-00308-7
中图分类号
学科分类号
摘要
Seizure detection and prediction are a very hot topics in medical signal processing due to their importance in automatic medical diagnosis. This paper presents three efficient frameworks for applications related to electroencephalogram (EEG) signal processing. The first one is an automatic seizure detection framework based on the utilization of scale-invariant feature transform (SIFT) as an extraction tool. The second one depends on the utilization of the fast Fourier transform (FFT) and an artificial neural network for epileptic seizure prediction. Finally, an automated patient-specific framework for channel selection and seizure prediction is presented based on FFT. The simulation results show the success of the proposed frameworks for automated medical diagnosis. © 2021, Springer-Verlag GmbH Germany, part of Springer Nature.
引用
收藏
页码:393 / 428
页数:35
相关论文
共 50 条
[21]   Theoretical and methodological analysis of EEG based seizure detection and prediction: An exhaustive review [J].
Cherian, Resmi ;
Kanaga, E. Gracemary .
JOURNAL OF NEUROSCIENCE METHODS, 2022, 369
[22]   Epileptic Seizure Detection using EEG Signals [J].
Khan, Irfan Mabood ;
Khan, Mohd Maaz ;
Farooq, Omar .
5TH INTERNATIONAL CONFERENCE ON COMPUTING AND INFORMATICS (ICCI 2022), 2022, :111-117
[23]   Real-Time Epileptic Seizure Detection Using EEG [J].
Vidyaratne, Lasitha S. ;
Iftekharuddin, Khan M. .
IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2017, 25 (11) :2146-2156
[24]   Epileptic Seizure Detection Based on Bandwidth Features of EEG Signals [J].
Wulandari, Diah P. ;
Putriz, Nomala G. P. ;
Suprapto, Yoyon K. ;
Purnami, Santi W. ;
Juniani, Anda, I ;
Islamiyah, Wardah R. .
FIFTH INFORMATION SYSTEMS INTERNATIONAL CONFERENCE, 2019, 161 :568-576
[25]   A Shallow Autoencoder Framework for Epileptic Seizure Detection in EEG Signals [J].
Khan, Gul Hameed ;
Khan, Nadeem Ahmad ;
Bin Altaf, Muhammad Awais ;
Abbasi, Qammer .
SENSORS, 2023, 23 (08)
[26]   Cloud-based Deep Learning of Big EEG Data for Epileptic Seizure Prediction [J].
Hosseini, Mohammad-Parsa ;
Soltanian-Zadeh, Hamid ;
Elisevich, Kost ;
Pompili, Dario .
2016 IEEE GLOBAL CONFERENCE ON SIGNAL AND INFORMATION PROCESSING (GLOBALSIP), 2016, :1151-1155
[27]   Epileptic seizure prediction by the detection of seizure waveform from the pre-ictal phase of EEG signal [J].
Das, Khakon ;
Daschakladar, Debashis ;
Roy, Partha Pratim ;
Chatterjee, Atri ;
Saha, Shankar Prasad .
BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2020, 57
[28]   EPILEPTIC SEIZURE PREDICTION USING THE SPATIOTEMPORAL CORRELATION STRUCTURE OF INTRACRANIAL EEG [J].
Williamson, James R. ;
Bliss, Daniel W. ;
Browne, David W. .
2011 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2011, :665-668
[29]   Comprehensive Analysis of EEG Datasets for Epileptic Seizure Prediction [J].
Rahman, Rihat ;
Varnosfaderani, Shiva Maleki ;
Makke, Omar ;
Sarhan, Nabil J. ;
Asano, Eishi ;
Luat, Aimee ;
Alhawari, Mohammad .
2021 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS), 2021,
[30]   Machine learning-based EEG signals classification model for epileptic seizure detection [J].
Aayesha ;
Qureshi, Muhammad Bilal ;
Afzaal, Muhammad ;
Qureshi, Muhammad Shuaib ;
Fayaz, Muhammad .
MULTIMEDIA TOOLS AND APPLICATIONS, 2021, 80 (12) :17849-17877