On Universality of Local Edge Regime for the Deformed Gaussian Unitary Ensemble

被引:0
|
作者
T. Shcherbina
机构
[1] Institute for Low Temperature Physics,
来源
Journal of Statistical Physics | 2011年 / 143卷
关键词
Random matrices; Edge universality; Deformed GUE; Airy kernel;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the deformed Gaussian ensemble \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$H_{n}=H_{n}^{(0)}+M_{n}$\end{document} in which \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$H_{n}^{(0)}$\end{document} is a hermitian matrix (possibly random) and Mn is the Gaussian unitary random matrix (GUE) independent of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$H_{n}^{(0)}$\end{document}. Assuming that the Normalized Counting Measure of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$H_{n}^{(0)}$\end{document} converges weakly (in probability if random) to a non-random measure N(0) with a bounded support and assuming some conditions on the convergence rate, we prove the universality of the local eigenvalue statistics near the edge of the limiting spectrum of Hn.
引用
收藏
页码:455 / 481
页数:26
相关论文
共 17 条