On Universality of Local Edge Regime for the Deformed Gaussian Unitary Ensemble
被引:0
|
作者:
T. Shcherbina
论文数: 0引用数: 0
h-index: 0
机构:Institute for Low Temperature Physics,
T. Shcherbina
机构:
[1] Institute for Low Temperature Physics,
来源:
Journal of Statistical Physics
|
2011年
/
143卷
关键词:
Random matrices;
Edge universality;
Deformed GUE;
Airy kernel;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
We consider the deformed Gaussian ensemble \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$H_{n}=H_{n}^{(0)}+M_{n}$\end{document} in which \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$H_{n}^{(0)}$\end{document} is a hermitian matrix (possibly random) and Mn is the Gaussian unitary random matrix (GUE) independent of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$H_{n}^{(0)}$\end{document}. Assuming that the Normalized Counting Measure of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$H_{n}^{(0)}$\end{document} converges weakly (in probability if random) to a non-random measure N(0) with a bounded support and assuming some conditions on the convergence rate, we prove the universality of the local eigenvalue statistics near the edge of the limiting spectrum of Hn.