Powers of Hypercyclic Functions for Some Classical Hypercyclic Operators

被引:0
|
作者
R. M. Aron
J. A. Conejero
A. Peris
J. B. Seoane–Sepúlveda
机构
[1] Kent State University,Department of Mathematical Sciences
[2] Universitat Politècnica de València,Departament de Matemàtica Aplicada and IMPA
[3] Universitat Politècnica de València,UPV, F. Informàtica
[4] Universidad Complutense de Madrid,Departament de Matemàtica Aplicada and IMPA
来源
Integral Equations and Operator Theory | 2007年 / 58卷
关键词
Primary 47A16; Secondary 30D15; Hypercyclic vectors; universal functions;
D O I
暂无
中图分类号
学科分类号
摘要
We show that no power of any entire function is hypercyclic for Birkhoff’s translation operator on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathcal{H}(\mathbb{C})$$ \end{document}. On the other hand, we see that the set of functions whose powers are all hypercyclic for MacLane’s differentiation operator is a Gδ-dense subset of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathcal{H}(\mathbb{C})$$ \end{document}.
引用
收藏
页码:591 / 596
页数:5
相关论文
共 50 条
  • [31] Syndetically Hypercyclic Operators
    Alfredo Peris
    Luis Saldivia
    Integral Equations and Operator Theory, 2005, 51 : 275 - 281
  • [32] Frequently hypercyclic operators
    Bayart, Frederic
    Grivaux, Sophie
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2006, 358 (11) : 5083 - 5117
  • [33] MULTIPLES OF HYPERCYCLIC OPERATORS
    Badea, Catalin
    Grivaux, Sophie
    Muller, Vladimir
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2009, 137 (04) : 1397 - 1403
  • [34] Hypercyclic sequences of operators
    Leon-Saavedra, Fernando
    Mueller, Vladimir
    STUDIA MATHEMATICA, 2006, 175 (01) : 1 - 18
  • [35] Subspaces of Frequently Hypercyclic Functions for Sequences of Composition Operators
    Bernal-Gonzalez, L.
    Calderon-Moreno, M. C.
    Jung, A.
    Prado-Bassas, J. A.
    CONSTRUCTIVE APPROXIMATION, 2019, 50 (02) : 323 - 339
  • [36] Polynomial automorphisms and hypercyclic operators on spaces of analytic functions
    Novosad, Zoryana
    Zagorodnyuk, Andriy
    ARCHIV DER MATHEMATIK, 2007, 89 (02) : 157 - 166
  • [37] Hypercyclic convolution operators on Frechet spaces of analytic functions
    Carando, Daniel
    Dimant, Veronica
    Muro, Santiago
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 336 (02) : 1324 - 1340
  • [38] Hypercyclic composition operators on spaces of real analytic functions
    Bonet, Jose
    Domanski, Pawel
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2012, 153 : 489 - 503
  • [39] Hypercyclic behaviour of operators in a hypercyclic C0-semigroup
    Conejero, Jose A.
    Muller, V.
    Peris, A.
    JOURNAL OF FUNCTIONAL ANALYSIS, 2007, 244 (01) : 342 - 348
  • [40] On Hypercyclic Operators in Weighted Spaces of Infinitely Differentiable Functions
    Rakhimova, A. I.
    MATHEMATICAL NOTES, 2023, 114 (1-2) : 242 - 249